Радиосхемы схемы электрические принципиальные. Бортовой светодиодный вольтметр Вольтметр индикатор на светодиодах своими руками схемы

Приветствую всех. Поведу сегодня речь о вольтметре. Что такое вольтметр многие помнят из школьных уроков физики 8 класса. А если быть точнее, то вольтметр (вольт + гр. μετρεω измеряю) - измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии. (Согласно определению Википедии)

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения. К нашему прибору к сожалению это не относится, поскольку по проводам, с помощью которых производим измерения подается ток для питания схемы и индикаторов.
По принципу действия наш вольтметр электронный, цифровой. Это значит, что микросхема, которая установлена внутри измеряет сигнал и преобразует его в цифровой вид для удобства восприятия.
В прошлом веке распространены были стрелочные вольтметры, типа таких:


Впрочем они и сейчас широко используются.

Но возможно Вам более знакомы другие картинки:

индикатор уровня/вольтметр в магнитофоне

или даже в автомобиле семейства ВАЗ классика



У стрелочных вольтметров есть существенный недостаток - подвес катушки со стрелкой, которые требуют бережного отношения и призваны работать только в одном положении (в противном случае возрастает погрешность при измерении). Этого недостатка нет у электронных приборов. Советская промышленность освоила специализированные микросхемы типа 572ПВ2 и 572ПВ5, но они тоже морально устарели.

Доставка:

Обычный пакет, никаких пупырок и прочей защиты.


Дошло обычной почтой без трека примерно за 40 дней с момента заказа.

Заявленные характеристики и реальность:
-Диапазон измерения 3.2-30 Вольт.
-Защита от неправильного включения
Установлен диод защитный.
-При напряжении ниже 10 Вольт точность 0.01 В +-1 знак
-При напряжении выше 10 Вольт точность 0.1 В
-Красный цвет светодиодов
В продаже есть и с другими цветами семисегментных индикаторов
-Не требует питания
На самом деле питается от проводов на которых производится измерение
-Измерение производится по двум проводам
-Дисплей состоит и 3х светодиодных семисегментных индикаторов высотой 0.56 дюйма что соответствует примерно 14 мм
-Время обновления данных 5 раз в секунду
-Максимально изменяемое напряжение 30 Вольт
Ограничено стабилизатором на плате
-Минимальное 3.2 Вольта.
По факту примерно от 3.6 Вольта.
-Заявленная точность:
0.01В при измерении до 10В и 0.1В от 10В и выше, не более 1%±1знак
Соответствует (АЦП 12 бит)
-Диапазон температур -10℃~65℃
-Размеры: 48мм x 29мм x 22мм (L*W*H)
Посадочное отверстие: 46*27мм
-Ток потребления не более 20mA
Ток потребления зависит от цифр на индикаторе - чем больше горит сегментов, тем больше потребляемый ток, но не более 20 мА

Внешний вид с небольшими подробностями:


Размеры соответствуют заявленным, что не удивительно. Поэтому на них подробно останавливаться не буду.
Язычки для фиксации вольтметра в окне:


Плата немного болтается в корпусе, «лечится» каплей герметика или клея.
Пустой корпус и защитная пленка, она же выполняет роль светофильтра:


Пленка с лицевой стороны матовая, благодаря чему бликов при засвете относительно немного:

Индикатор на 3 знака. Даже пленку не сняли:
Фото для сравнения


Пленка «работает при засвете» С бликами достаточно приемлемо:


параметры читаемы.

Дошли наконец и до платы:
Пайка вполне аккуратная, следов флюса не обнаружено.


D1 защитный диод не дает выйти из строя компонентам при неправильном подключении (неправильная полярность). U2 стабилизатор 7133H Holtek (3.3 Вольта) от него питается микросхема. На основании того, что на стабилизаторе (серия low drop) падает минимум 0.1 Вольта, а так же на диоде падает не менее 0.2 Вольта, поэтому минимальное питание вольтметра, при котором гарантированы стабильные значения должно быть не менее 3.6 Вольта. Что не совпадает с заявленным продавцом. Резисторы 221 (8штук) ограничивают ток сегментов индикаторов.
Маркировка на контроллере удалена. Изначально я подумал, что используется какой то PIC16, но я не нашел в каталоге корпуса с 16 ногами, поэтому все же склонился к мысли о контроллере серии Holtek . В любом случае АЦП 12 бит избыточен для 30 Вольт и точности 1 знак после запятой. С небольшой натяжкой можно было бы использовать 8 бит АЦП.

Испытания:
Сводятся к банальному сравнению с существующими приборами.
Не обращайте внимания на минусовые показания, это у нас электрики так пользуются, а я сразу и не заметил.
Скрутки проводов для одновременного подключения- не выход из положения. Использовал пружинные клеммники wago.




Заявлена работа от 3.2 Вольта, но внутренний стабилизатор требует минимум 3.4 Вольта на входе.


забыл переключить на больший диапазон





Вообщем точность относительно высокая и даже обнаружилось что токоизмерительные клещи занижают показания, поэтому их как ориентир я буду игнорировать.
Плату я не замораживал, но пробовал греть феном примерно до +50С. Результаты не изменились.

Оккупировала детское кресло


неудачное фото




Небольшое не обязательное видео о бликах и частоте обновления показаний для наглядности:

Выводы:
Различные самоделки - прямое предназначение. Если произвести герметизацию щелей, то можно использовать как защищенные IP 67. Одна из причин подвигших меня купить данные вольтметры - заканчиваются старые запасы стрелочных вольтметров. Я применяю их в самодельных зарядных устройствах для автомобильных аккумуляторов на базе трансформатора для электронных ламп. К сожалению фотографий законченного устройства ни одной нет - потребители на мою просьбу прислать фото в работе игнорируют. Ссылку на посторонний ресурс размещать не буду, по желанию можно в личку отправить.
Существуют в продаже и более дешевые варианты вольтметров - без корпуса.

Плюсы:
Исполнение корпуса с рамкой (щитовое исполнение) дает возможность закрыть глаза на неточно изготовленое посадочное отверстие
Большие и яркие цифры
Существуют несколько цветов
Экран почти не дает бликов
Точность соответствует +-1 последнему знаку
Минусы:
Питание требует от 3.6 Вольта (заявлено 3.2)
Плата незначительно болтается в корпусе.

Планирую купить +11 Добавить в избранное Обзор понравился +28 +43

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, - вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0...99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0...9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0...9.99V, 0...999mA, 0...999V, 0...99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое - это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0...99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7...16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Встала задача определения состояния аккумуляторной батареи во время разряда, хранения ее и заряда, пришлось вспомнить навыки и взяться за паяльник. Все схемы с кучей компараторов и прочими ухищрениями своим размером навевали тоску - проще было мультиметр привязать к аккумулятору. Поэтому решено было придумать что-нибудь простое и элегантное, в результате родилась схема, которую можно масштабировать под свои нужды как в ширину, так и в глубину. На один шаг напряжения используются всего три элемента - стабилитрон, резистор и светодиод (на этом месте хлопни себя по лбу и воскликни: "Как я раньше не додумался!"

В общем лови схему и фото готового устройства из расчета на одну 12 Вольтовую свинцовую кислотную аккумуляторную батарею как в UPSах и автомобилях. Индикация от совсем разряжено (напряжение меньше 9,5В) до полностью заряжено (напряжение больше 14,6В). Если надо другие диапазоны или шкалу хочется шире, то берем ближайший стабилитрон по напряжению и считаем токоограничительный резистор для светодиода. (1,5В падение, 20мА ток).
В общем все просто.




Если использовать SMD компоненты, то можно уложиться в эту десятикопеечную монету, ну у меня задачи миниатюризации не стояло, потому собрал на макетке.

Первый красный светодиод показывает, что схема подключена и какое-то напряжение есть. второй - больше 9 Вольт, третий, желтый, - больше 10В, четвертый - больше 11В, пятый, зеленый, - больше 12В и шестой - больше 13В. Градации между этими точками прекрасно видны по степени свечения соответствующих светодиодов. В данном случае аккумулятор стоит на заряде и вот-вот будет заряжен.

Схема бортового автомобильного вольтметра с индикацией на приведена на рисунке ниже:

Прибор представляет собой шестиуровневый линейный индикатор, в интервале от 10 до 15 вольт. DA1, на К142ЕН5Б на выводе 8, выдает напряжение 6 вольт для питания цифровой микросхемы DD1 типа К561ЛН2. Инверторы микросхемы К561ЛН2 служат пороговыми элементами, представляя собой нелинейные усилители напряжения, а резисторы R1 – R7 задают смещение на входах этих элементов. входное напряжение инвертора превысит пороговый уровень, на его выходе появится напряжение низкого уровня, светодиод на выходе соответствующего инвертора будет светиться.

Печатная плата бортового светодиодного вольтметра со схемой расположения деталей на ней, размером 80х45 мм изображена на рисунках ниже:

При налаживании бортового светодиодного вольтметра, вместо аккумулятора подключают лабораторный стабилизированный источник на 10 вольт, установив временно подстроечный резистор, вместо резистора R1. Изменяя сопротивление R1, добиваются момента включения светодиода HL1. Остальные уровни устанавливаются автоматически. При детальной проверке остальных уровней, уточняются сопротивления R2 – R6, соответственно.