Опыт использования модульного обучения на уроках информатики. Предложения по построению школьного курса информатики Информационная культура как современная цель преподавания школьного курса информатики

Тема : Структура и содержание обучения основам информатики

План:

Формирование концепции и содержания непрерывного курса информатики для средней школы. Структура обучения основам информатики в средней общеобразовательной школе (Пропедевтика обучения информатике в начальной школе. Базовый курс информатики. Профильное изучение информатики в старших классах).

Стандартизация школьного образования в области информатики. Назначение и функции стандарта в школе. Государственный общеобязательный стандарт по информатике среднего общего образования РК.

Говоря о содержании курса информатики в школе, следует иметь в виду требования к содержанию образования, которые изложены в Законе Об образовании». В содержании образования всегда выделяют три компоненты: воспитание, обучение и развитие. Обучение занимает центральное положение. Содержание общего образования включает в себя информатику двояким образом – как отдельный учебный предмет и через информатизацию всего школьного образования. На отбор содержания курса информатики влияют две группы основных факторов, которые находятся между собой в диалектическом противоречии:

  1. Научность и практичность. Это означает, что содержание курса должно идти от науки информатики и соответствовать современному уровню её развития. Изучение информатики должно давать такой уровень фундаментальных познаний, который действительно может обеспечить подготовку учащихся к будущей профессиональной деятельности в различных сферах.
  2. Доступность и общеобразовательность. Включаемый материал должен быть посилен основной массе учащихся, отвечать уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Курс также должен содержать все наиболее значимые, общекультурные, общеобразовательные сведения из соответствующих разделов науки информатики.

Школьный курс информатики, с одной стороны, должен быть современным, а с другой – быть элементарным и доступным для изучения. Совмещение этих двух во многом противоречивых требований является сложной задачей.

Содержание курса информатики складывается сложно и противоречиво. Оно должно соответствовать социальному заказу общества в каждый данный момент его развития. Современное информационное общество выдвигает перед школой задачу формирования у подрастающего поколения информатической компетентности. Понятие информатической компетентности достаточно широко и включает в себя несколько составляющих: мотивационную, социальную когнитивную, технологическую и др. Когнитивная составляющая курса информатики направлена на развитие у детей внимания, воображения, памяти, речи, мышления, познавательных способностей. Поэтому при определении содержания курса следует исходить из того, что информатика обладает большой способностью формирования этих сфер личности и, в особенности, мышления школьников. Общество нуждается в том, чтобы вступающие в жизнь молодые люди обладали навыками использования современных информационных технологий. Все это требует дальнейших исследований и обобщения передового педагогического опыта.

Машинный и безмашинный варианты курса информатики . Первая программа курса ОИВТ 1985 года содержала три базовых понятия: информация, алгоритм, ЭВМ. Эти понятия определяли обязательный для усвоения объём теоретической подготовки. Содержание обучения складывалось на основе компонентов алгоритмической культуры и, затем, компьютерной грамотности учащихся. Курс ОИВТ предназначался для изучения в двух старших классах – в девятом и десятом. В 9 классе отводилось 34 часа (1 час в неделю), а в 10 классе содержание курса дифференцировалось на два варианта – полный и краткий. Полный курс в 68 часов был рассчитан для школ, располагающих вычислительными машинами или имеющими возможность проводить занятия со школьниками на вычислительном центре. Краткий курс объёмом 34 часа предназначался для школ, не имеющих возможности проводить занятия с применением ЭВМ. Таким образом, сразу были предусмотрено 2 варианта – машинный и безмашинный. Но в безмашинном варианте планировались экскурсии объёмом 4 часа на вычислительный центр или предприятия, использующие ЭВМ.

Однако реальное состояние оснащения ЭВМ школ и готовности учительских кадров привели к тому, что курс был изначально ориентирован на безмашинный вариант обучения. Большая часть учебного времени отводилась на алгоритмизацию и программирование.

Первый собственно машинный вариант курса ОИВТ был разработан в 1986 году в объёме 102 часа для двух старших классов. В нем на знакомство с ЭВМ и решение задач на ЭВМ отводилось 48 часов. В то же время существенного отличия от безмашинного варианта не было. Но, тем не менее, курс был ориентирован на обучение информатике в условиях активной работы учащихся с ЭВМ в школьном кабинете вычислительной техники (в это время начались первые поставки в школы персональных компьютеров). Курс был достаточно быстро сопровожден соответствующим программным обеспечением: операционной системой, файловой системой, текстовым редактором. Были разработаны прикладные программы учебного назначения, которые быстро стали неотъемлемым компонентом методической системы преподавателя информатики. Предполагалась постоянная работа школьников с ЭВМ на каждом уроке в кабинете информатики. Было предложено три вида организационного использования кабинета вычислительной техники – проведение демонстраций на компьютере, выполнение фронтальных лабораторных работ и практикума.

Безмашинный вариант сопровождался несколькими учебными пособиями, например, учебники А.Г. Кушниренко с соавторами в то время получили широкое распространение. Тем не менее, и машинный вариант во многом продолжал линию на алгоритмизацию и программирование, и меньше содержал фундаментальные основы информатики.

В 1990 годы с поступлением компьютеров в большинстве школ курс информатики начал преподаваться в машинном варианте, а основное внимание учителя стали уделять освоению приемов работы на компьютере и информационных технологий. Однако следует отметить, что реалии третьего десятилетия преподавания информатики показывают наличие в настоящее время безмашинного варианта или большо его доли в значительном числе школ, не только сельских, но и городских. Преподавание в начальной школе также ориентировано, в основном, на безмашинное изучение информатики, чему есть некоторое объяснение – время работы на компьютере для учащихся начальной школы не должно превышать 15 минут. Поэтому учебники информатики для них содержат лишь небольшую долю собственно компьютерного компонента.

Стандарт образования по информатике . Введение образовательного стандарта стало шагом вперед, а само его понятие прочно вошло в арсенал основных понятий дидактики.

Государственный стандарт содержит нормы и требования, определяющие:

  • обязательный минимум содержания основных образовательных программ;
  • максимальный объём учебной нагрузки учащихся;
  • уровень подготовки выпускников образовательных учреждений;
  • основные требования к обеспечению образовательного процесса.

Назначение образовательного стандарта состоит в том, что он призван:

  • обеспечить равные возможности для всех граждан в получении качественного образования;
  • сохранить единство образовательного пространства;
  • защитить обучающихся от перегрузок и сохранить их психическое и физическое здоровье;
  • установить преемственность образовательных программ на разных ступенях образования;
  • предоставить право гражданам на получение полной и достоверной информации о государственных нормах и требованиях к содержанию образования и уровню подготовки выпускников образовательных учреждений.

Образовательный стандарт по информатике и ИКТ является нормативным документом, определяющим требования:

  • к месту курса информатики в учебном плане школы;
  • к содержанию курса информатики в виде обязательного минимума содержания образования;
  • к уровню подготовки учащихся в виде набора требований к ЗУНам и научным представлениям;
  • к технологии и средствам проверки и оценки достижения школьниками требований образовательного стандарта.

В стандарте можно выделить два основных аспекта: Первый аспект – это теоретическая информатика и сфера пересечения информатики и кибернетики: системно‐информационная картина мира, общие закономерности строения и функционирования самоуправляемых систем.

Второй аспект – это информационные технологии. Этот аспект связан с подготовкой учащихся к практической деятельности и продолжению образования.

Модульное построение курса информатики . Накопленный опыт преподавания, анализ требований стандарта и рекомендаций ЮНЕСКО показывают, что в курсе информатики можно выделить две основные составляющие – теоретическая информатика и информационные технологии. Причем информационные технологии постепенно выходят на первый план. Поэтому ещё в базисном учебном плане 1998 года рекомендовалось теоретическую информатику включать в образовательную область «математика и информатика», а информационные технологии – в образовательную область «Технология». Сейчас в основной и старшей школе от такого деления отказались.

Выход из этого противоречия можно найти в модульном построении курса, что позволяет учесть быстро меняющееся содержание, дифференциацию учебных заведений по их профилю, оснащенности компьютерами и программным обеспечением, наличию квалифицированных кадров.

Образовательные модули можно классифицировать на базовые, дополнительные и углубленные, что обеспечивает соответствие содержания курса информатики и ИКТ базисному учебному плану.

Базовый модуль – он является обязательным для изучения, обеспечивающий минимальное содержание образования в соответствии с образовательным стандартом. Базовый модуль часто еще называют базовым курсом информатики и ИКТ, который изучается в 7–9 классах. В тоже время в старшей школе обучение информатике может быть на базовом уровне или на профильном уровне, содержание которого также определяется стандартом.

Дополнительный модуль – призван обеспечить изучение информационных технологий и аппаратных средств.

Углубленный модуль – призван обеспечить получение углубленных знаний, в том числе необходимых для поступления в вуз.

Помимо такого деления на модули, среди методистов и учителей в ходу выделение в содержании курса таких модулей, которые соответствуют делению на основные темы. Таким образом, названные выше модули в свою очередь делят для удобства на более мелкие модули.

Вопросы и задания

  1. Какие главные факторы влияют на отбор содержания курса информатики?
  2. Опишите машинный и безмашинный варианты курса ОИВТ 1985 и 1986 гг.
  3. Каково назначение стандарта?
  4. Проанализируйте содержание стандарта по информатике и ИКТ для основной школы и вы‐пишите требования к умениям школьников.
  5. Проанализируйте содержание образовательного стандарта по информатике и ИКТ для старшей школы на базовом уровне и выпишите требования к умениям учащихся.
  6. Почему принято модульное построение современного курса информатики?
  7. Что обеспечивает изучение базового модуля курса информатики?
  8. Что обеспечивает изучение дополнительного модуля курса информатики?
  9. Что обеспечивает изучение углубленного модуля (школьного компонента) курса информатики?

Проанализируйте базисный учебный план школы и выпишите число недельных часов на изучение информатики в каждом классе.

Advertisements

Провела: Оськина Н.Н.

Новая образовательная система выдвигает на первое место не знания, умения и навыки, а личность ребенка, ее развитие посредством образования.

На сегодняшний день широко известны технология укрупнения дидактических единиц (УДЕ) П.М.Эрдниева, технология развивающего обучения Д.Б.Эльконина-В.В.Давыдова, гуманно-личностная технология Ш.А.Амонашвили, технология интенсификации обучения на основе схемных и знаковых моделей учебного материала В.Ф.Шаталова, технология проблемного модульного обучения М.Чошанова, технология модульного обучения П.И.Третьякова, К.Вазимой, технологии В.М.Монахова, В.П.Беспалько и многих других ученых.

В Казахстане активно используются технологии обучения Ж.А.Караева, А.А.Жунисбека и др.

Законом «Об образовании» Республики Казахстан утвержден принцип вариативности в выборе форм, методов, технологий обучения, позволяющий учителям, педагогам образовательных учреждений использовать наиболее оптимальный, на их взгляд, вариант, конструировать педагогических процесс по любой модели, включая и авторские. Разработанный вариант технологии носит модульный характер (Модуль -определяемая, относительно самостоятельная часть какой-либо системы, организации). (С.И.Ожегов).

Учебный модуль, как воспроизводимый учебный цикл, имеет конструкцию, состоящую из трех структурных частей: вводной, диалогической и итоговой. Диалогическая (подготовительная) часть учебного модуля имеет еще одну особенность. Как показало исследование, широкое использование активных и игровых форм обучения позволяет учащимся работать с учебным материалом, возвращаясь к нему в рамках учебного модуля от 13-и до 24-х раз. (Психологами доказано, что усвоение материала происходит при 7-кратном возврате к нему.).

В диалогической части учебного модуля нами используется не традиционная-пятибалльная (по сути, трехбалльная) система оценки знаний учащихся, а девятибалльная, позволяющая каждому ученику безболезненно переходить от одного уровня заданий к другому, так как в рамках каждого уровня можно получить отметку «отлично», «хорошо» или «удовлетворительно».

Формы организации уроков диалогической части смоделированы таким образом, что каждый ученик знает, как и чем ему надо заниматься, что делать в течение урока, так как учитель заранее знакомит учеников с правилами (если это обучающие игры) или построением и ходом урока.

Обязательным условием является обучение посредством игровой организации и применения разнообразных активных форм (групповая, индивидуально-групповая и парная, работа, диспуты, дискуссии). Диалогическая часть строится на активных формах обучения сначала с целью воспроизведения учебного материала и формирования элементарных умений и навыков, а затем - с целью проведения анализа, синтеза и оценки знаний.

СТРУКТУРА МОДУЛЬНОГО ОБУЧЕНИЯ

Педагогическая технология содержит в своей основе идею воспроизводимого обучающего цикла. В его содержание входят:

    общая постановка цели обучения;

    переход от общей формулировки цели к ее конкретизации;

    предварительная (диагностическая) оценка уровня облученности учащихся;

    совокупность учебных процедур (на этом этапе должна происходить коррекция обучения на основе оперативной обратной связи);

    оценка результата.

Отсюда изменения в работе учителя и в построении учебного процесса. В методике полного усвоения (Дж. Блок, Л.Андерсен и др.) в рамках каждой учебной единицы работа учителя строится в такой последовательности:

    Ознакомление детей с учебными целями.

    Ознакомление класса с общим планом обучения по данному разделу (учебной единице).

    Проведение обучения (преимущественно в виде изложения материала учителем).

    Проведение текущей проверки диагностического теста.

    Оценка результатов проверки и выявление учеников, которые полностью усвоили содержание раздела.

    Проведение корректных обучающих процедур с учениками, не достигшими полного усвоения.

    Проведение диагностического теста и выявление учеников, полностью усвоивших содержание учебной единицы.

В нашем варианте последовательность несколько иная:

    Ознакомление учащихся с учебными целями.

    Ознакомление класса с общей моделью (модулем) обучения по данному блоку тем (близких по содержанию), разделу.

    Краткое изложение материала учителем (на основе знаковой системы-схем, графиков, таблиц и т.д.).

    Организация познавательной деятельности учащихся на основе диалогического общения с ежеурочной оценкой результатов деятельности каждого ученика.

    Изучение учебного материала на основе 4-7-кратного возвращения (по «нарастающей») к общей теме, разделу.

    Проведение тестирования по всей теме.

7. Проведение обычного или «релейного» зачета по теме (или диктанта,контрольной работы и т.д.)..

Учебный модуль, как воспроизводимый учебный цикл, имеет конструкцию, состоящую их трех структурных частей: вводной, диалогической и итоговой.

Большое значение в диалогической части технологии модульного обучения, имеют оценка, самооценка и взаимооценка результатов учебного труда учащихся.

Оценивание знаний учащихся происходит по балльной системе, когда каждому ученику предъявляются три задания разной степени сложности.

На моих уроках я использую элементы модульной технологии (Оценочный лист «Общий оценочный бланк», задания от простого к сложному, тестовые задания, работа осуществляется в парах «на практических заданиях».

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ»

Кафедра педагогики и психологии

Допустить к защите

Зав. кафедрой __________________

_______________________________

«______» _______________ 20___г.

Курсовая работа

Модульная технология на уроках информатики в школе

Казань 2011


C одержание

Введение

Модульное обучение в школе заключается в последовательном усвоении учеником модульных единиц и модульных элементов. Гибкость и вариативность модульной технологии профессионального обучения особенно актуальны в условиях рыночных отношений при количественных и качественных изменениях рабочих мест, перераспределении рабочей силы, необходимости массового переобучения работников. Нельзя не учитывать и фактор кратковременности обучения в условиях ускоренных темпов научно-технического прогресса.

Актуальность данной работы заключается в том, что быстроразвивающийся технический прогресс диктует новые условия для обучения и предъявляет новые требования в профессии. В рамках обучения учащийся частично или полностью самостоятельно может работать с предложенной ему учебной программой, которая содержит в себе целевую программу действий, базы информации и методическое руководство для достижения поставленных дидактических целей.

В этом случае функции преподавателя могут изменяться от информационно-контролирующих до консультационно-координирующих. Технология модульного обучения базируется на объединении принципов системного квантования и модульности. Первый принцип составляет методологическую основу теории «сжимания», «сворачивания» учебной информации. Второй принцип является нейрофизиологической основой метода модульного обучения. При модульном обучении нет строго заданного срока обучения.

Он зависит от уровня подготовленности учащегося, его предыдущих знаний и умений, желаемого уровня получаемой квалификации. Обучение может прекратится после овладения любого модуля. Учащийся может выучить один или несколько модулей и в дальнейшем получить узкую специализацию или овладеть всеми модулями и получить широкопрофильную профессию. Для выполнения работы все модульные единицы и модульные элементы можно не изучать, а только те, которые необходимы для выполнения работы с конкретными требованиями. С другой стороны, профессиональные модули могут состоять из модульных единиц, которые относятся к разным специальностям и разным областям деятельности.

Целью данной работы является изучение модульных технологий на уроках информатики в школе.

Достижение данной цели способствует решение следующих задач:

Рассмотреть особенности модульной технологии обучения в школе;

Изучить методику модульной технологии обучения в школе;

Применить практически методику модульной технологии на уроке в общеобразовательной школе.

Объектом исследования является построение урока информатики в школе с применением модульных технологий в обучающем процессе. Предметом исследования является применение модульных технологий в процессе урока информатики в общеобразовательной средней школе.

При написании данной работы использовалась специальная литература, методические пособия, справочники, учебники для ВУЗов.

Глава 1. Особенности модульной технологии обучения

1.1. Анализ предметной системы обучения и необходимость

её модернизации на основании интегрирования предметов

Сегодня главной в образовании является предметная система обучения. Если посмотреть на источники ее создания, то можно увидеть, что она создана в начале интенсивного развития и дифференциации наук, быстрого увеличения знаний в разных областях человеческой деятельности.

Дифференциация наук привела к созданию огромного количества предметов (дисциплин). Наиболее наглядно это проявилось в школьном и профессиональном обучении, учащиеся учебных заведений изучают до 25 предметов, которые слабо связаны между собой. Известно, что каждая конкретная наука является логической системой научных знаний, методов и средств познания 1 .

Цикл специальных предметов представляет собой синтез фрагментов научно-технических и производственных знаний и видов производственной деятельности. Предметная система является эффективной при подготовке учащихся и студентов по фундаментальным и некоторым прикладным дисциплинам, в которых теоретические знания и практические умения в конкретных областях знаний или деятельности приведены в систему. Предметная система органично вписалась в классно-урочную форму организации обучения.

К другим преимуществам предметной системы обучения можно отнести сравнительно простую методику составления учебно-программной документации и подготовку преподавателя к занятиям. В то же время предметная система имеет существенные недостатки, основными из которых являются:

Системность знаний в учебных предметах связана с большим количеством фактического учебного материала, терминологической загруженностью, неопределенностью и несогласованностью объема учебного материла с уровнем его сложности;

Большое количество предметов неизбежно ведет к дублированию учебного материала и связана с увеличением времени на обучение;

Не согласованная учебная информация, которая поступает от разных предметов, усложняет для учеников ее систематизацию и, как следствие, затрудняет формирование из них целостной картины окружающего мира;

Поиск межпредметных связей усложняет учебный процесс и не всегда позволяет систематизировать знания учащихся;

Предметное обучение, как правило, носит информационно-репродуктивный характер: ученики получают «готовые» знания, а формирование умений и навыков достигается путем воссоздания образцов деятельности и увеличения количества исполнения ими заданий. Это не обеспечивает эффективность обратных связей и, как следствие, усложняется управление обучения учащихся, что приводит к снижению его качества;

Поточный учет успешности учащихся, как один из важных инструментов совершения обратных связей, недостаточно эффективен из-за относительно больших (15-20%) ошибок знаний и умений учащихся по субъективной методике преподавателей;

Разнообразность предметов, которые одновременно изучаются, большой объем разнопланового по подобности учебного материала приводит к перегруженности памяти учащихся и к невозможности реального усвоения учебного материала всеми учащимися;

Жесткая структура учебно-программной документации, лишняя регламентация учебного процесса, которые включают жесткие временные рамки урока и сроков обучения;

Слабая дифференциация обучения, ориентирование на «среднего» учащегося;

Преимущественно фронтально-групповая организационная форма обучения вместо индивидуальной 1 .

Из практики профессионального обучения известно, что учащиеся лучше воспринимают и усваивают комплексные интегрированные знания. Поэтому возникает необходимость создания соответствующей системы обучения, разработки теоретических основ и методик интегрирования предметов, разработки учебных программ на блочно-модульной основе и содержания дидактических элементов.

1.2. Общие понятия о модульной системе обучения

Модульная система обучения была разработана Международной организацией труда (МОТ) в 70-х годах двадцатого века как обобщение опыта подготовки рабочих кадров в экономически развитых странах мира.

Эта система быстро распространилась по всему миру и, по сути, стала международным стандартом профессионального обучения. Она обеспечивает мобильность трудовых ресурсов в условиях НТП и быстрое переобучение работников, которые освобождаются при этом. Модульная система разрабатывалась в рамках популярной тогда индивидуализированной системы обучения Ф. Келлера, поэтому включило в себя ряд позитивных моментов:

Формирование конечных и промежуточных целей обучения;

Распределение учебного материала на отдельные разделы;

Индивидуализированные темпы обучения;

Возможность перехода к изучению нового раздела, если полностью усвоен предыдущий материал;

Регулярный тестовый контроль знаний 2 .

Появление модульного метода – попытка ликвидировать недостатки следующих существующих методов учебной подготовки:

Направленность профессиональной подготовки на получение профессии в общем, а не на выполнение конкретной работы, что мешало устраиваться на работу выпускникам учебных заведений;

Негибкость подготовки относительно требований отдельных производств и технологичных процессов;

Несоответствие подготовки довольно сильно дифференцированному общеобразовательному уровню разных групп населения;

Отсутствие учета индивидуальных особенностей учеников.

Главное в модульном обучении – возможность индивидуализации обучения. С точки зрения Дж. Рассела, наличие альтернативных (выборочных) модулей и свободный их выбор позволяет всем ученикам усвоить учебный материал, но в индивидуальном темпе. Важно, чтоб задания для учеников были настолько сложны, чтоб они работали с напряжением своих умственных способностей, но, вместе с тем, настолько сложными, чтоб не было навязчивого педагогического руководства.

В потребности вольного выбора модуля из альтернативного набора скрывается одна из возможностей формирования готовности к выбору как черты личности, важной также и для формирования самостоятельности в образовании. В то же время при индивидуализированной системе обучения от учащегося требуется полное усвоение учебного материала с конкретным испытанием по каждому модулю. Гибкость модульного обучения. Дж. Рассел представляет модуль, как единицу учебного материала, которая отвечает отдельной теме.

Модули могут группироваться в разные комплекты. Один и тот же модуль может отвечать отдельным частям требований, которые касаются разных курсов. Добавляя «новые» и исключая «старые», можно, не изменяя структуру, составить любую учебную программу с высоким уровнем индивидуализации. Соглашаясь с такой трактовкой «гибкости», ряд исследователей возражают против рассмотрения модулей как единиц учебного материала, которые соответствуют одной теме 1 .

Гибкость в таком понимании приведет к фрагментарности обучения. Существует элективность обучения (возможность свободного выбора действий). Следуя системе Ф. Келлера, важной чертой модульного обучения является отсутствие жестких организационных временных рамок обучения: оно может проходить в удобное для учащегося время. Отсутствие жестких временных рамок позволяет ученику продвигаться в обучении со скоростью, которая соответствует его способностям и наличия свободного времени: ученик может выбирать не только необходимые ему модули, но и порядок их изучения.

Модульное обучение на уроках информатики.

Цель современного образования – обеспечить образовательные потребности каждого обучающегося в соответствии с его склонностями, интересами и возможностями. Для ее достижения необходимо кардинально поменять отношения обучаемого и педагога в учебном процессе. Новая парадигма состоит в том, что студент должен учиться сам, а преподаватель - осуществлять мотивационное управление его обучением, т.е. мотивировать, организовывать, консультировать, контролировать. Для решения этой задачи требуется такая педагогическая технология, которая бы обеспечила обучаемому развитие его самостоятельности, умений осуществлять самоуправление учебно-познавательной деятельностью. Такой технологией является модульное обучение.

Модульное обучение – это одна из молодых альтернативных традиционному обучению технологий, которая в последнее время получает широкомасштабное использование. Свое название модульное обучение получило от термина "модуль", одно из значений которого - " функциональный узел".

Модуль - это целевой функциональный узел, в котором объединены учебное содержание и технология овладения им.

Цель модульного обучения - создание наиболее благоприятных условий для развития личности обучаемого путем обеспечения гибкого содержания обучения, приспособление дидактической системы к индивидуальным возможностям, запросам и уровню базовой подготовки обучаемого посредством организации учебно-познавательной деятельности по индивидуальной учебной программе.

Сущность модульного обучения состоит в относительно самостоятельной работе обучаемого по освоению индивидуальной программы, составленной из отдельных модулей (модульных единиц). Каждый модуль представляет собой законченное учебное действие, освоение которого идет по операциям-шагам (схема).

Модуль может представлять содержание курса в трех уровнях: полном, сокращенном и углубленном.

Программный материал подается одновременно на всех возможных кодах: рисуночном, числовом, символическом и словесном.

Модуль состоит из следующих компонентов:

Точно сформулированная учебная цель ();

Банк информации: собственно учебный материал в виде обучающих программ;

Методическое руководство по достижению целей;

Практические занятия по формированию необходимых умений;

Контрольная работа, которая строго соответствует целям, поставленным в данном модуле.

Организация деятельности обучающихся.

В технологии модульного обучения используются следующие формы организации познавательной деятельности учащихся:

    фронтальная,

    работа в группах,

    работа в парах,

    индивидуальная.

Но в отличие от традиционного обучения, приоритетной становится индивидуальная форма работы, что позволяет каждому учащемуся усваивать учебный материал в своём темпе.

Одной из особенностей модульной технологии является рейтинговая система оценивания деятельности студентов.

В модульной технологии оценивается выполнение каждого учебного элемента. Оценки накапливаются в ведомости (листе оценок), на основании которой выставляется итоговая оценка за работу над модулем. Точность контроля и объективность оценки играют большую роль. Получить хорошую оценку – одна из главных мотиваций модульной технологии. Студент чётко знает, что его труд оценивается на каждом этапе и оценка объективно отражает его усилия и способности.

Любой модуль включает контроль за выполнением задания, за усвоением знаний обучающихся. Модуль будет неполным, если отсутствует инструкция по контролю. Используются следующие формы контроля:

    самоконтроль;

    взаимный контроль обучающихся;

    контроль преподавателя.

Самоконтроль осуществляется обучающимся. Он сравнивает полученные результаты с эталоном и сам оценивает уровень своего исполнения.

Взаимный контроль возможен тогда, когда студент уже проверил задание и исправил ошибки. Либо студент имеет эталон ответов. Теперь он может проверить задание партнёра и выставить оценку.

Контроль преподавателем осуществляется постоянно. Обязателен входной и выходной контроль в модуле. Кроме этого, осуществляется текущий контроль. Формы контроля могут быть самыми разными: тестирование, индивидуальное собеседование, контрольная или творческая работа и т.д.

Текущий и промежуточный контроль выявляют пробелы в усвоении знаний с целью немедленного их устранения, а выходной контроль показывает уровень усвоения всего модуля и тоже предполагает соответствующую доработку.

Преимущества использования рейтинговой системы для студентов:

    Студент точно знает, что он должен усвоить, в каком объеме и что должен уметь после изучения модуля.

    Студент может самостоятельно планировать свое время, эффективно использовать свои способности.

    Учебный процесс сконцентрирован на обучающемся, а не на преподавателе.

    Снижается стрессовая ситуация во время контроля как для обучающегося, так и для преподавателя.

    Обучение становится личностно-ориентированным .

Данная технология позволяет развивать и воспитывать

    Аналитическое и критическое мышление .

    Коммуникативные способности .

    Ответственность за результаты своей работы.

    Чувство взаимопомощи, умение контролировать себя.

    Умение рационально распределять своё время.

    Чувство самоуважения.

Преимущества для преподавателей:

    Преподаватель имеет возможность индивидуализировать учебный процесс;

    Преподаватель своевременно определяет проблемы в обучении;

Основные трудности для обучающихся:

    Студенты должны владеть самодисциплиной, чтобы добиваться поставленных целей;

    Студенты должны выполнять большой объем самостоятельной работы;

    Студенты сами несут ответственность за свое обучение.

Основные трудности для преподавателей:

    Отказ педагога от центральной роли в учебном процессе. Педагог организует и направляет учебный процесс, контролирует полученные результаты, в большей степени становится консультантом, помощником ученика.

    Изменение структуры и стиля своей работы для обеспечения активной, самостоятельной, целеустремленной и результативной работы каждого студента. Большой объем подготовительной, консультативной и проверочной работы.

Модуль состоит из циклов уроков (двух - и четырехурочных). Расположение и количество циклов в блоке могут быть любыми. Каждый цикл в этой технологии является своего рода мини-блоком и имеет жестко определенную структуру. Рассмотрим организацию четырехурочного цикла.

Первый урок цикла предназначен для изучения нового материала с опорой на максимально доступный комплекс средств обучения. Как правило, на этом уроке каждый учащийся получает конспект или развернутый план материала (заранее размноженный либо появляющийся на экране, мониторе одновременно с объяснением учителя). На этом же уроке проводится первичное закрепление материала, конкретизация информации в специальной тетради.

Цель второго урока – заменить собой домашнюю проработку материала, обеспечить его усвоение и проверку усвоения. Работа проходит в парах или малых группах. Перед уроком учитель воспроизводит на экране конспект, известный учащимся по первому уроку цикла, и проецирует вопросы, на которые необходимо им ответить. По организационной форме этот урок является разновидностью практикума.

Третий урок полностью отводится под закрепление. Сначала это работа со специальной тетрадью (на печатной основе), а затем выполнение индивидуальных заданий.

Четвертый урок цикла включает предварительный контроль, подготовку к самостоятельной работе и собственно самостоятельную работу. В модульно-блочной технологии применяются объяснительно-иллюстративный, эвристический, программированный методы обучения.

Фундаментом модульного обучения является модульная программа. Модульная программа представляет собой серию сравнительно небольших порций учебной информации, подаваемых в определенной логической последовательности.

Условия для перехода на модульное обучение.

Для перехода на модульное обучение необходимо создать определённые условия:

1. Развитие соответствующих мотивов у преподавателя.

2. Готовность обучающихся к самостоятельной учебно-познавательной деятельности – сформированность минимума необходимых для этого знаний и общих учебных умений.

3. Материальные возможности учебного заведения в размножении модулей, т.к. они только тогда сыграют свою роль, когда каждый обучающийся будет обеспечен этой программой действий.

В целом опыт показывает, что технология модульного обучения требует от педагога большой предварительной работы, а от обучающегося – напряжённого труда.

Модульный принцип формирования учебного материала в курсе «Информатика» позволяет включать новые разделы, необходимость изучения которых вызывается (впрочем, как и содержание всего обучения в школе) потребностями общества.

Рассмотрим модульное обучение информатике на примере темы «Компьютерная безопасность».

Тема может включать следующие модули:

Теоретические основы защиты информации;

Защита информации средствами операционной системы;

Защита и восстановление информации на жестких дисках;

Основы ;

Защита информации в локальных и глобальных сетях;

Правовые основы защиты информации.

Содержание каждого модуля требует от учителя привлечение дополнительных источников информации, так как в учебниках, разрешенных к использованию, данные вопросы рассмотрены недостаточно.

Изучение каждого модуля в теме «Компьютерная безопасность» должно предусматривать проведение теоретических и практических занятий и основываться на знании базовых разделов информатики и информационных технологий. В конце изучения каждого модуля проводится контроль качества его усвоения в форме контрольной работы. Завершается изучение темы итоговой контрольной работой, содержащей комплексное задание по содержанию всей темы. Итоговая контрольная работа может быть заменена проектным заданием, выполнение которого требует не только знания содержания темы, но и практических умений, навыков исследовательской деятельности, творческого подхода. Результаты проектной деятельности представляются публично, что служит развитию коммуникационных навыков, умения защищать свое мнение, критично и доброжелательно относиться к суждениям оппонентов.

Отличительной особенностью темы «Компьютерная безопасность» должно являться дополнительное программное и техническое обеспечение уроков. Выполнение практических заданий по внесению элементов защиты в настройки операционной системы и персонального компьютера, а также выявлению и устранению неисправностей на жестких дисках требует как высокой подготовленности учителя, так и резервирования жестких дисков ЭВМ компьютерных классов программными и аппаратными методами.

Литература

1. Качалова Л. П., Телеева Е. В., Качалов Д. В. Педагогические технологии. Учебное пособие для студентов педагогических вузов. – Шадринск, 20с.

2. Селевко Г. К. Современные образовательные технологии: Учебное пособие. – М.: Народное образование, 19с.

3. Телеева Е. В. Педагогические технологии. Учебное пособие. – Шадринск, 20с.

4. Чошанов М. А. Гибкая технология проблемно-модульного обучения: Методическое пособие. – М.: Народное образование, 19с.

5. Юцявичене П. А. Принципы модульного обучения //Советская педагогика. – 1990. – № 1. – С. 55.

6. Ярошенко И. Т. «Защита информации» - как тема и содержание учебного модуля предмета "Информатика" [Электронный ресурс]/ И. Т. Ярошенко – Режим доступа: http://www. *****/ito/2002/I/1/I-1-332.html.

БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ОРЛОВСКОЙ ОБЛАСТИ

ОРЛОВСКИЙ ТЕХНИКУМ ПУТЕЙ СООБЩЕНИЯ ИМ. В. А. ЛАПОЧКИНА

ДОКЛАД

Модульное обучение на уроках информатики

преподаватель информатики

Подрез Н. А.

Орел 2016

При изучении программирования использую модульную технологию обучения. Это позволяет мне, во-первых, сформировать целостность представления изучаемого материала, во-вторых, создать для ученика ситуацию выбора и творчества, и, в-третьих, сформировать навыки сотрудничества. Рассмотрим применение модульного обучения на примере темы «Массивы». Традиционно эта тема является одной из самых сложных в курсе программирования.

КДЦ (комплексная дидактическая цель) изучения этой темы – овладеть способом организации и обработки большого количества данных одного типа средствами языка программирования Бейсик. При изучении этой темы

ученик должен знать:

– определение массива;

– способ его описания;

– способы обращения к элементу массива.

ученик должен уметь:

– использовать ранее изученные понятия – типы данных и циклы;

– обосновать необходимый рациональный способ организации данных;

– определить тип элементов массива;

– составлять блок-схемы алгоритмов с использованием массивов;

– писать программы на языке Бейсик, обрабатывающие большое количество данных одного типа.

Модуль «Массивы» включает в себя:

  • лекция на тему «Массивы, основные термины и понятия, использование массивов при решении различных задач;
  • урок решения задач на тему «Одномерные числовые массивы. Элемент массива, индекс элемента массива»;
  • лекция на тему «Символьные массивы»;
  • урок решения задач на тему «Операции над массивами»;
  • лекция на тему «Двумерные массивы»;
  • подмодуль «Двумерные массивы»;
  • урок обобщения на тему «Массивы»;
  • подмодуль обобщения «Творческое задание»;
  • зачет по теме «Массивы».

Опишем содержание подмодуля «Двумерные массивы». В начале урока каждый учащийся получает разработанную учителем инструкционную карту, в которой весь учебный материал разбит на учебные элементы (УЭ). Выполняя эти УЭ, ученик овладевает необходимыми знаниями, сам контролирует освоение изучаемого материала (в контрольном листе) и учится сотрудничать с одноклассниками.

Советы учителя

Цель: на основании теоретических знаний о двумерных массивах и вложенных циклах ты должен научиться:

– организовывать данные в виде таблиц;

– обосновывать выбор элемента массива;

– описывать табличные данные;

– писать и отлаживать программы, обрабатывающие двумерные массивы, в среде Бейсик.

Обрати внимание на время, отведенное для выполнения каждого УЭ. Постарайся уложиться. Желаю успеха.

Цель: проверить себя, насколько свободно ты пишешь программы с использованием одномерных массивов и циклов.

6. Эксперты проставят на листе контроля в таблице к УЭ4 баллы за задачу.

Время выполнения не более 25–30 минут.

Выступление рассчитывайте на 2–3 минуты.

Цель: убедиться, что ты научился писать программы с использованием двумерных массивов .

Тесты задач находятся в файле УЭ5 (<Приложение3 >). Номер твоей задачи совпадает с номером твоего компьютера.

1. Напиши программу на Бейсике и сохрани в файле УЭ5_N.ВАS, где N – номер твоей задачи.

2. Убедись, что программа работает верно. Позови учителя.

3. Задание просматривается и оценивается учителем на листе контроля в таблице к УЭ5.

4. Оцени урок по 10-бальной шкале (<Рисунок 1 >):

– удовлетворен ли ты своей работой (Я);

– достигнута ли цель, сформулированная в УЭ0 (дело);

– работу всего класса (мы).

5. Ответь на вопросы теста (<Приложение5 >) и сдай их учителю.

Спасибо за проделанную работу!

Время выполнения не более 10–15 минут.

Подведение итогов.

1. По завершении каждого УЭ проставь себе баллы в контрольном листке.

2. Верно выполненный УЭ с опережением времени добавит тебе или твоей группе 1 балл.

3. Выступающему в УЭ4 – 1 добавочный балл.

4. Эксперт – 1 добавочный балл.

5. Баллы, набранные членами группы, суммируются в общий итог работы группы.