Отличие статической и динамической балансировки деталей, их назначение. Технология балансировки якорей

Каусов М.А - сотрудник редакции

Надежная и исправная работа вращающихся механизмов зависит от большого числа факторов, таких как: соосность валов агрегата; состояние подшипников, их смазка, посадка на валу и в корпусе; износ корпусов и уплотнений; зазоры в проточной части; выработка сальниковых втулок; радиальный бой и прогиб вала; дисбаланс рабочего колеса и ротора; подвеска трубопроводов; исправность обратных клапанов; состояние рам, фундаментов, анкерных болтов и многое другое. Очень часто упущенный небольшой дефект, как снежный ком тянет за собой другие, а в результате выход оборудования из строя. Только учитывая все факторы, точно своевременно диагностируя их, и соблюдая требования ТУ на ремонт вращающихся механизмов, можно добиться безотказной работы агрегатов, обеспечить заданные рабочие параметры, увеличить межремонтный ресурс, снизить уровень вибрации и шума. Планируется посвятить теме ремонта вращающихся механизмов ряд статей, в которых будут рассмотрены вопросы диагностики, технологии ремонта, модернизации конструкции, требованиям к отремонтированному оборудованию и рационализаторским предложениям по повышению качества и снижению трудоемкости ремонта.

В ремонте насосов, дымососов и вентиляторов трудно переоценить значение точной балансировки механизма. Как удивительно и радостно видеть некогда грохочущую и трясущуюся машину, которую усмирили и успокоили несколько граммов противовеса, заботливо установленные в «нужное место» умелыми руками и светлой головой. Невольно задумываешься о том, что значат граммы металла на радиусе колеса вентилятора и тысячах оборотов в минуту.

Так в чем же причина такой резкой перемены в поведении агрегата?

Попробуем представить себе, что вся масса ротора вместе с рабочим колесом сосредоточена в одной точке - центре масс (центре тяжести), но из-за неточности изготовления и неравномерности плотности материала (особенно для чугунных отливок) эта точка смещена на некоторое расстояние от оси вращения (Рисунок №1). При работе агрегата возникают силы инерции - F, действующие на смещенный центр масс, пропорциональные массе ротора, смещению и квадрату угловой скорости. Они-то и создают переменные нагрузки на опоры R, прогиб ротора и вибрации, приводящие к преждевременному выходу агрегата из строя. Величина равная произведению расстояния от оси до центра масс на массу самого ротора - называется статическим дисбалансом и имеет размерность x см].

Статическая балансировка

Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.

Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.

Чтобы сбалансировать колесо нужно решить три задачи:

1) найти то самое «нужное место» - направление, на ко тором расположен центр тяжести;

2) определить, сколько «заветных грамм» противовеса необходимо и на каком радиусе их расположить;

3) уравновесить дисбаланс корректировкой массы рабочего колеса.

Приспособления для статической балансировки

Найти место дисбаланса помогают приспособления для статической балансировки. Их возможно изготовить самостоятельно они просты и недороги. Рассмотрим некоторые конструкции.

Простейшим устройством для статической балансировки являются ножи или призмы (Рисунок №2), установленные строго горизонтально и параллельно. Отклонение от горизонта в плоскостях параллельной и перпендикулярной оси колеса, не должно превышать 0,1 мм на 1 м. Средством проверки может служить уровень «Геологоразведка 0,01» или уровень соответствующей точности. Колесо одевается на оправку, имеющую опорные шлифованные шейки (в качестве оправки, можно использовать вал, заранее проверив его точность). Параметры призм из условий прочности и жесткости для колеса массой 100 кг и диаметром шейки оправки d = 80 мм составят: рабочая длинна L = p X d = 250 мм; ширина около 5 мм; высота 50 - 70 мм.

Шейки оправки и рабочие поверхности призм должны быть шлифованными для снижения трения. Призмы необходимо зафиксировать на жестком основании.

Если дать колесу возможность свободно перекатываться по ножам, то после остановки центр масс колеса займет положение не совпадающее с нижней точкой, из-за трения качения. При вращении колеса в противоположную сторону, после остановки оно займет другое положение. Среднее положение нижней точки соответствует истинному положению центра масс устройства (Рисунок №3) для статической балансировки. Они не требуют точной горизонтальной установки как ножи и на диски (ролики) можно устанавливать ротора с разными диаметрами цапф. Точность определения центра масс меньше из-за дополнительного трения в подшипниках качения роликов.

Применяются устройства для статической балансировки роторов в собственных подшипниках. Для снижения трения в них, которое определяет точность балансировки, применяют вибрацию основания или вращение наружных колец опорных подшипников в разные стороны.

Балансировочные весы.

Самым точным и в то же время сложным устройством статической балансировки являются балансиро вочные весы (Рисунок №4). Конструкция весов для рабочих колес приведена на рисунке. Колесо устанавливают на оправку по оси шарнира, который может качаться в одной плоскости. При повороте колеса вокруг оси, в различных положениях его уравновешивают противовесом, по величине которого находят место и дисбаланс колеса.

Методы балансировки

Величину дисбаланса или количество граммов корректирующей массы определяют следующими способами:

-методом подбора, когда установкой противовеса в точке противоположной центру масс добиваются равновесия колеса в любых положениях;

-методом пробной массы - Мп, которую устанавливают под прямым углом к «тяжелой точке», при этом ротор совершит поворот на угол j. Корректирующую массу вычисляют по формуле Мк = Мп ctg j или определят по номограмме (Рисунок №5): через точку, соответствующую пробной массе на шкале Мп, и точку, соответствующую углу отклонения от вертикали j, проводят прямую, пересечение которой с осью Мк дает величину корректирующей массы.

В качестве пробной массы можно использовать магниты или пластилин.

Метод кругового обхода

Самым подробным и наиболее точным, но и наиболее трудоемким является метод кругового обхода. Он применим и для тяжелых колес, где большое трение мешает точно определить место дисбаланса. Поверхность ротора делят на двенадцать или более равных частей и последовательно в каждой точке подбирают пробную массу Мп, которая приводит ротор в движение. По полученным данным строят диаграмму (Рисунок №6) зависимости Мп от положения ротора. Максимум кривой соответствует «легкому» месту, куда необходимо установить корректирующую массу Мк = (Мп max + Мп min)/2.

Способы устранения дисбаланса

После определения места и величины дисбаланса его необходимо устранить. Для вентиляторов и дымососов дисбаланс компенсируется противовесом, который устанавливается на внешней стороне диска рабочего колеса. Чаще всего для крепления груза используют электросварку. Этот же эффект достигается снятием металла в «тяжелом» месте на рабочих колесах насосов (по требованиям ТУ допускается снятие металла на глубину не более 1 мм в секторе не более 1800). При этом корректировку дисбаланса стараются проводить на максимальном радиусе, т. к. с увеличением расстояния от оси, возрастает влияние массы корректируемого металла на равновесие колеса.

Остаточный дисбаланс

После балансировки рабочего колеса из-за погрешностей измерений и неточности устройств сохраняется смещение центра масс, которое называется остаточным статическим дисбалансом. Для рабочих колес вращающихся механизмов нормативная документация задает допустимый остаточный дисбаланс. Например, для колеса сетевого насоса 1Д1250 - 125 задается остаточный дисбаланс 175 г х см (ТУ 34 - 38 - 20289 - 85) .

Сравнение методов балансировки на различных устройствах

Критерием сравнения точности балансировки может служить удельный остаточный дисбаланс. Он равен отношению остаточного дисбаланса к массе ротора (колеса) и измеряется в [мкм]. Удельные остаточные дисбалансы для различных методов статической и динамической балансировки сведены в таблицу №1.

Из всех устройств статической балансировки, весы дают самый точный результат, однако, это устройство самое сложное. Роликовое устройство, хотя и сложнее параллельных призм в изготовлении, но проще в эксплуатации и дает результат не многим хуже.

Основным недостатком статической балансировки является необходимость получения низкого коэффициента трения при больших нагрузках от веса рабочих колес. Повышение точности и эффективности балансировки насосов, дымососов и вентиляторов можно достичь методами динамической балансировки роторов на
станках и в собственных подшипниках.

Применение статической балансировки

Статическая балансировка рабочих колес эффективное средство снижения вибрации, нагрузки на подшипники и повышения долговечности машины. Но она не панацея от всех бед. В насосах типа «К» можно ограничиться статической балансировкой, а для роторов моноблочных насосов «КМ» требуется динамическая, т. к. там возникает взаимное влияние небалансов колеса и ротора электродвигателя. Необходима динамическая балансировка и для роторов электродвигателей, где масса распределена по длине ротора. Для роторов с двумя и более колесами, имеющих массивную соединительную полумуфту (например СЭ 1250 - 140), колеса и муфта балансируются отдельно, а затем ротор в сборе балансируют динамически. В отдельных случаях длят обеспечения нормальной работы механизма необходима динамическая балансировка всего агрегата в собственных подшипниках.

Точная статическая балансировка - это необходимая , но иногда не достаточная основа надежной и долговечной работы агрегата.

Цель балансировки состоит в устранении неуравновешенности детали сборочной единицы относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил которые могут быть причиной вибрации узла и всей машины преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей например овальность; неоднородность и неравномерность распределения материала детали относительно оси ее вращения образованные при...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


БАЛАНСИРОВКА ДЕТАЛЕЙ И УЗЛОВ

Виды неуравновешенности

Балансировка вращающихся частей машин — важный этап технологического процесса сборки машин и оборудования. Цель балансировки состоит в устранении неуравновешенности детали (сборочной единицы) относительно оси ее вращения. Неуравновешенность вращающейся детали приводит к возникновению центробежных сил, которые могут быть причиной вибрации узла и всей машины, преждевременного выхода из строя подшипников и других деталей. Основными причинами неуравновешенности деталей и узлов могут быть: погрешность формы деталей (например, овальность); неоднородность и неравномерность распределения материала детали относительно оси ее вращения, образованные при получении заготовки литьем, сваркой или наплавкой; неравномерное изнашивание и деформация детали в процессе эксплуатации; смещение детали относительно оси вращения из-за погрешности сборки и др.

Неуравновешенность характеризуется дисбалансом — величиной, равной произведению неуравновешенной массы детали или сборочной единицы на расстояние центра масс до оси вращения, а также углом дисбаланса, определяющим угловое расположение центра масс. Различают три вида неуравновешенности вращающихся деталей и узлов: статическую, динамическую и смешанную, как сочетание первых двух.

Статическая неуравновешенность имеет место, если массу тела можно рассматривать как приведенную к одной точке (центру масс), отстоящей на некотором расстоянии от оси вращения (рис. 6.52). Этот вид неуравновешенности характерен для деталей типа дисков, высота которых меньше диаметра (шкивы, зубчатые колеса, маховики, крыльчатки, рабочие колеса насосов и т.п.).

Образующаяся при вращении такой детали центробежная сила Q (Н) определяется по формуле

Q =mω 2 ρ,

где m — масса тела, кг; ω — угловая скорость вращения тела, рад/с; ρ — расстояние от оси вращения до центра массы, м.

На практике обычно принимается, что указанная центробежная сила не должна превышать 4—5 % веса детали.

Неуравновешенность рассматриваемого вида можно обнаружить, не приводя объект во вращение, поэтому она называется статической.

Рис. 6.52. Виды неуравновешенности вращающегося тела: а — статическая; б — динамическая; в — общий случай неуравновешенности

Динамическая неуравновешенность возникает, когда при вращении детали образуются две равные противоположно направленные центробежные силы Q, лежащие в плоскости, проходящей через ось вращения (рис. 6.52, б). Создаваемый ими момент пары сил М (Н) определяется уравнением

М =mω 2 ρa,

где а — расстояние между направлениями действия сил, м.

Динамическая неуравновешенность проявляется при вращении относительно длинных тел, например роторов электрических машин, валов с несколькими установленными зубчатыми колесами и т.п. Она может возникать даже при отсутствии статической неуравновешенности.

Общий случай неуравновешенности, также присущий длинным объектам, характеризуется тем, что на вращающийся объект одновременно действуют приведенная пара центробежных сил S—S (рис. 6.52, в) и приведенная центробежная сила Т. Эти силы можно привести к двум действующим в различных плоскостях силам Р и Q, расположенных, например, для удобства измерения в его опорах. Значения этих сил определяются по формулам:

Р =m 1 ρ 1 ω 2 ;

Q= m 2 ρ 2 ω 2

При вращении детали, кроме реакций от действующих на нее внешних сил, возникают также реакции от неуравновешенных сил Р и Q, что повышает нагрузку на подшипники и сокращает срок их службы.

Для уменьшения неуравновешенности до допустимых значений применяют балансировку вращающихся деталей и узлов, которая включает определение величины и угла дисбаланса и корректировку массы балансируемого изделия путем ее уменьшения или прибавления в определенных местах. В зависимости от вида неуравновешенности различают статическую или динамическую балансировку.

Статическая балансировка

Статической балансировкой достигается совмещение центра массы (центра тяжести объекта) с осью его вращения. Наличие неуравновешенности (дисбаланса) и место ее расположения определяют с помощью специальных устройств двух типов. На устройствах первого типа она определяется без сообщения вращения детали за счет уравновешивания ее дисбаланса, а на устройствах второго типа (балансировочных станках) — путем измерения центробежной силы, создаваемой неуравновешенной массой, поэтому вращение детали обязательно.

В машиностроении обычно применяются, как более простые, устройства первого типа: с двумя горизонтально установленными параллельными призмами (рис. 6.53, а) или двумя парами установленных на подшипниках качения дисков (рис. 6.53, 6), а также балансировочные весы (рис. 6.56). В первых двух случаях (см. рис. 6.53) балансируемую деталь 1 плотно насаживают на оправку 2 или закрепляют концентрично с ней, обычно с помощью раздвижных конусов. Оправку устанавливают на расположенные горизонтально призмы 3 или диски 4.

Метод выявления неуравновешенности зависит от величины дисбаланса. Если крутящий момент, создаваемый неуравновешенной массой относительно оси оправки, превышает момент сопротивления сил трения качению оправки по призмам (случай с явно выраженной неуравновешенностью), то деталь вместе с оправкой будет перекатываться по призмам, пока центр тяжести детали не займет нижнее положение. Закрепив груз массой m на диаметрально противоположной стороне детали, можно ее уравновесить. Для этого также в детали сверлят отверстия, которые заполняют более плотным материалом, например, свинцом. Обычно же уравновешивание обеспечивается удалением части металла с утяжеленной стороны детали (сверлением отверстий на определенную глубину, фрезерованием, спиливанием и т.п.).

Рис. 6.53. Схемы устройств для статической балансировки с призмами (а) и дисками (б); 1 — балансируемый объект; 2 — оправка; 3 — призма; 4 — диск

В обоих случаях для выполнения балансировки детали требуется знать удаляемую или добавляемую к ней массу металла. Для этого деталь с оправкой устанавливают на призмах так, чтобы центр их тяжести располагался и плоскости, проходящей через ось оправки. В диаметрально противоположной точке детали прикрепляют такой груз Q, при котором неуравновешенная масса m может повернуть диск на небольшой (около 10°) угол. Затем оправку с деталью поворачивают в том же направлении на 180° так, чтобы центры приложения груза Q и массы m находились снова в одной горизонтальной плоскости. Если отпустить диск в этом положении, то он повернется в обратном направлении на угол α. Возле груза Q прикрепляют такой добавочный груз q (магнитный или липкий), который воспрепятствовал бы указанному повороту оправки 2 и мог обеспечить ее поворот на такой же малый угол в противоположном направлении.

Зная массы Q и q, определяют искомую массу уравновешивающего груза Q 0 :

Q 0 = Q + q/2.

Для обеспечения балансировки такую массу металла следует добавить к детали в точке приложения груза Q или удалить с детали в диаметрально противоположной точке. Если требуется изменить расчетную массу уравновешивающего груза или точку ее приложения, то пользуются соотношением

Q 0 = Q 1 R,

где г — радиус положения расчетного уравновешивающего груза Q 0 ; Q 1 — масса постоянного уравновешивающего груза; R — расстояние от оси оправки до точки его приложения.

Возможен также случай скрытой статической неуравновешенности, когда момент, создаваемый неуравновешенной массой детали, недостаточен для преодоления момента трения качения между оправкой и призмами, и оправка с деталью при установке на призмы или диски остаются неподвижными.

В этом случае для определения неуравновешенности деталь размечают по окружности на 8—12 равных частей, которые отмечают соответствующими точками, как показано на рис. 6.54. При сложности или невозможности разметки балансируемой детали применяют специальный диск с делениями, который закрепляют неподвижно на конце оправки.

Затем перекатывают оправку с деталью по призмам в направлении, указанном стрелкой, и поочередно совмещают размеченные точки с горизонтальной плоскостью, проходящей через ось вращения оправки. Для каждого из этих положений детали подбирают груз q, который устанавливают на расстоянии г от оси оправки. Под действием этого груза оправка с деталью должна поворачиваться примерно на одинаковый угол (около 10°) в направлении перекатывания по призмам. Положение, для которого величина этого груза минимальна, например 4, определяет плоскость расположения центра неуравновешенной массы G.

Рис. 6.54. Схема определения скрытой неуравновешенности на начальном (а) и завершающем (б) этапах

Затем груз q снимают, и оправку поворачивают на 180° в направлении, указанном на рис. 6.54 стрелкой. В точке 8 на том же расстоянии от оси вращения оправки закрепляют такой груз Q (рис. 6.54, б), который обеспечивает поворот в том же направлении и на такой же угол. Масса Q 0 материала, удаляемого в точке 4 или добавляемого в точке 8 для балансировки детали, определяется из условия ее равновесия:

Q 0 =Gp/r=(Q-g)/2.

При выборе типа устройства следует учитывать, что его чувствительность тем выше, чем меньше сила трения между оправкой и опорами, поэтому более точными являются устройства с балансировочными дисками (см. рис. 6.53, б). Преимуществом этих устройств являются также менее жесткие требования к точности их установки по сравнению с призмами и более удобные и безопасные условия труда, так как при расположении оправки между двумя парами дисков исключается возможность ее падения с балансируемой деталью. Для уменьшения трения в опорах с дисками применяют наложение на них вибраций. Соприкасающиеся поверхности оправки и призм или дисков должны быть точно изготовлены и содержаться в идеальном состоянии. На них не допускаются забоины, следы коррозии и др. дефекты, снижающие чувствительность устройства.

Для ее повышения применяют также балансировочные устройства с аэростатическими опорами (рис. 6.55). В этом случае оправка с изделием находятся во взвешенном состоянии за счет того, что в опору 1 по каналам 2 и 4 подается под определенным давлением сжатый воздух.

Высокую производительность и точность определения неуравновешенности некоторых деталей обеспечивают балансировочные весы (рис. 6.56). Для ряда типов деталей они являются более эффективными по сравнению с призматическими и роликовыми устройствами, так как позволяют непосредственно определять неуравновешенную массу и место ее расположения в детали.

Рис. 6.55. Схема стенда для статической балансировки на воздушной подушке: 1 — опора стенда; 2, 4 — каналы для подвода сжатого воздуха; 3 — оправка

Рис. 6.56. Схема балансировочных весов для небольших (а) и крупногабаритных (6) деталей: 1 — уравновешивающие грузы; 2 — коромысло; 3 — балансируемая деталь

Оправку с закрепленной на ней балансируемой деталью 3 (рис. 6.56, а) устанавливают на правом конце коромысла 2 весов. На левом конце коромысла подвешивают уравновешивающие грузы 1. Если центр тяжести проверяемой детали смещен относительно оси ее вращения, то при различных положениях детали показания весов будут неодинаковыми. Так, при положении центра тяжести детали в точках S1 или S3 (pиc. 6.56, а) весы покажут фактическую массу проверяемой детали. При положении центра тяжести в точке S2 их показания максимальны, а при положении центра тяжести в точке S4 — минимальны. Для определения положения центра тяжести детали показания весов фиксируют, периодически поворачивая ее вокруг своей оси на определенный угол, например, равный 30°.

Дисбаланс изделий типа дисков большого диаметра удобно определять на специальных весах (рис. 6.56, б). Они имеют две расположенные во взаимно перпендикулярных направлениях стрелки и приводятся в уравновешенное (горизонтальное) состояние с помощью грузов, расположенных диаметрально противоположно стрелкам.

Балансируемую деталь устанавливают с помощью специального приспособления на весах так, чтобы ее ось проходила через вершину опоры весов, выполненной в виде конического острия и соответствующего углубления в основании. При наличии у детали дисбаланса весы с деталью отклоняются от горизонтального положения. Перемещая по детали уравновешивающий груз, весы приводят в исходное (горизонтально) положение, контролируя его с помощью стрелок. По массе и положению уравновешивающего груза определяют величину и место нахождения дисбаланса.

Устройства второго типа для статической балансировки основаны на принципе регистрации центробежной силы, возникающей при вращении неотбалансированной детали. Они представляют собой специальные балансировочные станки, схема одного из которых приведена на рис. 6.57. Станок позволяет не только устанавливать наличие дисбаланса, но и устранять его сверлением отверстий.

Балансируемая деталь 1 устанавливается концентрично и закрепляется на столе 9, снабженном угловой шкалой. Двигатель 7 сообщает столу с деталью вращение с угловой частотой ω, поэтому при наличии у детали дисбаланса а возникает центробежная сила, под действием которой и реакции пружин 8 система получает колебательные движения относительно опоры 6. Последние фиксируются измерительным преобразователем (ИП), связанным со счетно-логическим устройством (СЛУ).

В момент максимального отклонения системы вправо СЛУ включает стробоскопическую лампу 4, освещающую угловую шкалу на столе 9, и передает на индикаторное устройство 5 сигнал, пропорциональный дисбалансу. Устройство 5, которое может быть стрелочного или цифрового типа, показывает значение требуемой глубины сверления.

Оператор фиксирует высвечиваемое на экране 3 угловое расположение дисбаланса. После остановки стол поворачивают вручную на требуемый угол и сверлом 2 в детали 1 сверлят отверстие на расстоянии г от оси вращения на глубину, необходимую для обеспечения балансировки детали. Существуют также балансировочные станки, на которых поворот диска в требуемую точку (или несколько точек) для выполнения сверления и процесс сверления выполняются в автоматическом режиме.

Рис. 6.57. Схема станка для статической балансировки: 1 — балансируемая деталь; 2 — сверло; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — шарнирная опора; 7 — электродвигатель; 8 — пружина; 9 — стол; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Точность статической балансировки характеризуется величиной е 0 ω р , где е 0 — остаточный удельный дисбаланс; ω р - максимальная рабочая частота вращения детали при эксплуатации.

Балансировка на призмах (см. рис. 6.53, а) обеспечивает е 0 = 20—80 мкм, на дисковых опорах (см. рис. 6.53, б) е 0 = 15—25 мкм, в аэростатических опорах (см. рис. 6.55) — е 0 = 3—8 мкм, на станке по рис. 6.57 — е 0 = 1—3 мкм. Международным стандартом МС 1940 предусмотрено 11 классов точности балансировки.

Динамическая балансировка

Статическая балансировка недостаточна для устранения дисбаланса у длинных объектов, когда неуравновешенная масса распределена вдоль оси вращения и не может быть приведена к одному центру. Такие тела подвергаются динамической балансировке.

У динамически отбалансированной детали сумма моментов центробежных сил масс, вращающихся относительно оси детали, равна нулю. Поэтому динамической балансировкой достигают совпадения оси вращения детали с главной осью инерции данной системы.

Если динамически неуравновешенное тело установить на податливые опоры, то при его вращении они совершают колебательные движения, амплитуда которых пропорциональна значению действующих на опоры неуравновешенных центробежных сил Р и Q (рис. 6.58). Способы динамической балансировки основаны на измерении колебаний опор.

Динамическую балансировку каждого конца детали обычно выполняют отдельно. Сначала, например, опору Ι (см. рис. 6.58) оставляют подвижной, а противоположную опору II закрепляют. Поэтому вращающийся объект в этом случае совершает колебательные движения в пределах угла α относительно опоры II только под действием силы Р.

Для повышения точности определения дисбаланса детали амплитуду колебаний опор измеряют при частоте ее вращения, совпадающей с частотой собственных колебаний балансировочной системы, т.е. в условиях резонанса. При динамической балансировке определяют массу и положение грузов, которые следует добавить к детали или удалить с нее. С этой целью применяют специальные балансировочные станки различных моделей в зависимости от массы уравновешиваемых деталей. Балансировка свободного конца детали заключается в определении значения и направления силы Р и устранения ее вредного влияния установкой в определенном месте уравновешивающего груза или удалением определенного количества материала. Затем закрепляют опору Ι, а опору II освобождают и аналогично выполняют балансировку детали со второго конца. Для упрощения конструкции станка подвижной делают обычно одну опору, а возможность балансировки детали с двух концов обеспечивается ее переустановкой на 180°.

Рис. 6.58. Схема колебаний детали при динамической балансировке

На этом принципе основана схема станка (рис. 6.59) для динамической балансировки, аналогичного рассмотренному выше (см. рис. 6.57).

Рис. 6.59. Схема станка для динамической балансировки: 1 — балансируемая деталь; 2 — угловая шкала; 3 — экран; 4 — стробоскопическая лампа; 5 — индикаторное устройство; 6 — пружина; 7 — основание; 8 — опора; 9 — электродвигатель; 10 — электромагнитная муфта; ИП — измерительный преобразователь; СЛУ — счетно-логическое устройство

Устройства ИП, СЛУ, 5,4,3 и угловая шкала 2 имеют то же назначение, что и аналогичные элементы в станке по рис. 6.57.

Балансируемую деталь 1 устанавливают на опоры основания 7, которое может совершать под действием пары сил инерции Q 1 Q 2 и реакции пружины 6 колебания относительно оси 8. Деталь приводится во вращение двигателем 9 через электромагнитную муфту 10, с угловой скоростью ω, несколько большей, чем резонансная частота собственных колебаний системы.

После проведения балансировки детали в плоскости bb ее поворачивают на 180° для проведения балансировки в плоскости аа. О качестве динамической балансировки судят по амплитуде вибрации, допускаемое значение которой указывается в технической документации. Оно зависит от частоты вращения отбалансированной детали и при частоте вращения 1000 мин -1 составляет 0,1 мм, а при 3000 мин -1 — 0,05 мм.

Другие похожие работы, которые могут вас заинтересовать.вшм>

7702. БАЛАНСИРОВКА ДЕТАЛЕЙ (УЗЛОВ) 284.44 KB
Приобретение технических навыков выполнения статистической балансировки ведомого диска сцепления и динамической балансировки коленчатого вала с маховиком и сцеплением в сборе. Содержание работы: ознакомление с технологией балансировки изучение оборудования и оснастки для статистической и динамической балансировки устранение статического дисбаланса ведомого диска сцепления двигателей ЗМЗ и ЗИЛ. Оборудование и оснастка рабочего места: балансировочный станок ЦКБ 2468 приспособление для статической балансировки ведомых дисков сцепления с...
9476. РЕМОНТ ТИПОВЫХ ДЕТАЛЕЙ И УЗЛОВ МАШИН. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ 8.91 MB
Высокая экономическая значимость этого при ремонте машин обусловлена тем что восстановлению подвергаются их наиболее сложные и дорогие детали. Виды технологических процессов восстановления Технологический процесс восстановления детали представляет совокупность действий направленных на изменение ее состояния как ремонтной заготовки с целью восстановления эксплуатационных свойств. Единичный технологический процесс предназначен для восстановления конкретной детали независимо от типа производства Типовой технологический процесс разрабатывается...
9451. ОЧИСТКА МАШИН, УЗЛОВ И ДЕТАЛЕЙ 14.11 MB
Эксплуатационные загрязнения образуются на наружных и внутренних поверхностях машин узлов и деталей. Осадки образуются из продуктов сгорания и физикохимического трансформирования топлива и масла механических примесей продуктов износа деталей и воды. Опыт и исследования показывают что благодаря качественной очистке деталей в процессе их восстановления повышается ресурс отремонтированных машин и возрастает производительность труда.
18894. Пригонка и сборка отдельных деталей и узлов механизма баластного насоса 901.45 KB
Основная часть: Пригонка и сборка отдельных деталей и узлов механизма баластного насоса. Приложения. Даже корректное расположение грузов не всегда может нормализовать и стабилизировать осадку судна в результате чего приходится наполнять его бесполезными с точки зрения реализации грузами. Водяной балласт является самым приемлемым корректирующим грузом на плавсредстве.
1951. Неуравновешенность роторов и их балансировка 159.7 KB
Если вращение ротора сопровождается появлением динамических реакций его подшипников что проявляется в виде вибрации станины то такой ротор называется неуравновешенным. Источником этих динамических реакций является главным образом несимметричное распределение массы ротора по его объему.1 б когда оси пересекаются в центре масс ротора S; Динамическую рис. Если масса ротора распределена относительно оси вращения равномерно то главная центральная ось инерции совпадает с осью вращения и ротор является уравновешенным или идеальным.
4640. МОДЕЛИРОВАНИЕ ЦИФРОВЫХ УЗЛОВ 568.49 KB
На кристаллах современных БИС можно поместить множество функциональных блоков старых ЭВМ вместе с цепями межблочных соединений. Разработка и тестирование таких кристаллов возможно только методами математического моделирования с использованием мощных компьютеров.
15907. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ СТАНЦИЙ И УЗЛОВ 667.65 KB
Железнодорожные станции их классификация 2. Железнодорожные станции их классификация Все железнодорожные линии делятся на перегоны или блок-участки. К ним относятся: разъезды обгонные пункты станции узлы. Станции – обеспечивают движение поездов по графику; отправление всех поездов в строгом соответствии с планом формирования поездов; исправными в техническом и коммерческом отношениях; обеспечивают безопасность движения при выполнении операций по приему отправлению и пропуску поездов производству маневров размещению и креплению грузов...
9483. Сборка узлов с подшипниками скольжения 10.89 MB
Сборка цельных подшипников. Основными факторами влияющими на работу и долговечность подшипника являются точность размеров втулки и шейки вала а также соосность подшипников которая должна быть обеспечена при их сборке. Соосность подшипников проверяется при помощи оптического прибора или контрольного вала который пропускается через все отверстия в корпусе. Шейки контрольного вала должны плотно прилегать к поверхностям подшипников.
11069. Расчет элементов и узлов аппаратуры связи 670.09 KB
В качестве задающего генератора в работе используется схема на биполярном транзисторе с пассивной RC- цепью. Генератор задает колебания с частотой 12.25 кГц и с определенным напряжением 16 В. Нелинейный преобразователь искажает форму сигнала и в его спектре появляются кратные гармоники, интенсивность которых зависит от степени искажения сигнала.
11774. процесс разборки узлов проточной части ТВД 1.24 MB
Перед началом разборки ТВД снимается обшивка всей турбины. Перед вскрытием ТВД должна быть удалена изоляция турбины так как в процессе ремонта производится зачистка под контроль металла цилиндров. Воздушный компрессор и ротор турбины высокого давления в сборе образуют узел компрессора и ротора ТВД.

Главным источником вибрации агрегатов является неуравновешенность роторов , которая всегда имеет место, из-за того, что ось вращения и ось инерции, проходящая через центр масс, не совпадают. Неуравновешенность роторов подразделяют на следующие три вида.

Статическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции параллельны (см. рис.1).

Рис.1

Моментная неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются в центре масс ротора (см. рис.2).

Рис.2

Динамическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются не в центре масс или перекрещиваются (см. рис.3). Она состоит из статической и моментной неуравновешенности.

Примечание: Здесь и далее выделены курсивом термины и определения, установленные ГОСТом 19534 – 74. Балансировка вращающихся тел. Термины.

Рис.3


Частным случаем динамической неуравновешенности является квазистатическая неуравновешенность, при которой ось ротора и его главная центральная ось пересекаются не в центре масс ротора.

Вызываемая неуравновешенностью центробежная сила определяется по формуле:

Fцн = P/g w 2 r = P/g (?n/30) 2 r, (1)
где w = 2?f = ?n/30– угловая скорость,
f – число оборотов ротора в секунду,
n – число оборотов в минуту,
P – вес ротора, q = 9,81м/сек2 – ускорение свободного падения,
r – радиус неуравновешенной массы или модуль эксцентриситета.

На высоких оборотах неуравновешенные массы могут развить центробежные силы до недопустимых значений, которые приведут к разрушению машины. Для большинства машин достижение неуравновешенной центробежной силой значения ок. 30% веса ротора является предельно допустимой величиной.

Произведение неуравновешенной массы на её эксцентриситет называют дисбалансом. Дисбаланс - величина векторная. Чаще используется термин "значение дисбаланса", которое равно произведению неуравновешенной массы на модуль её эксцентриситета.

Дисбалансы роторов в процессе эксплуатации могут быть вызваны износом рабочих частей, изменением посадки дисков, ослаблением крепления элементов входящих в состав роторов, деформацией и другими факторами, приводящими к смещению масс относительно оси вращения.

Значение дисбаланса обычно указывается в гмм, гсм. 1гсм = 10гмм.

Иногда для задания допуска используют отношение значения дисбаланса к массе ротора, называемое удельным дисбалансом . Удельный дисбаланс соответствует эксцентриситету центра массы ротора.
е ст = D/m (2)

Дисбалансы устраняются балансировкой. Балансировка - это процесс определения значений и углов дисбалансов ротора, и уменьшения их корректировкой масс. На практике получили распространение два вида балансировки: статическая и динамическая.


2. Балансировка. Общие сведения

Статическая балансировка, как правило, проводится в одной плоскости коррекции и применяется, главным образом, к дисковым роторам. Её можно использовать, если отношение длины ротора к его диаметру не превышает 0,25. Плоскостью коррекции называют плоскость, перпендикулярную оси ротора, в которой расположен центр корректирующей массы (массы, используемой для уменьшения дисбалансов ротора).

При статической балансировке определяется и уменьшается главный вектор дисбалансов ротора, характеризующий его статическую неуравновешенность. Главный вектор дисбалансов равен сумме всех векторов дисбалансов, расположенных в различных плоскостях, перпендикулярных оси ротора (см. рис. 4).

Рис.4



Для роторов, у которых их длины соизмеримы с диаметрами или превосходят их, статическая балансировка неэффективна, а в некоторых случаях может оказаться вредной. Например, если плоскость коррекции окажется на значительном расстоянии от главного вектора дисбалансов, то, уменьшив статическую неуравновешенность, можно увеличить моментную неуравновешенность.

Динамическая балансировка - это такая балансировка, при которой определяются и уменьшаются дисбалансы ротора, характеризующие его динамическую неуравновешенность (см. рис.4). При динамической балансировке уменьшаются как моментная, так и статическая неуравновешенность ротора одновременно.

Есть много методов балансировки. Все они основаны на предположении линейности системы, то есть амплитуды колебаний считаются пропорциональными значению дисбаланса, а фазы независимы от его величины. Существует одноплоскостная и многоплоскостная балансировка. При одноплоскостной балансировке расчёт корректирующих масс производится последовательно для каждой плоскости коррекции, при многоплоскостной - одновременно.

Многоплоскостная балансировка с использованием метода одновременного измерения амплитуд и фаз колебаний наиболее распространена при балансировке роторов агрегатов типа ГТК 10-4. Точнее, наиболее распространена двухплоскостная балансировка, которая является частным случаем многоплоскостной. Для расчёта корректирующих масс при таком методе балансировки необходимо выполнить, как минимум, три пуска: один начальный (нулевой) и два пробных с единичными (пробными) массами m п1 , m п2 , установленными на расстояниях r п1 , r п2 от оси вращения (см. рис.5). Порядок и комбинации установок пробных грузов могут быть различными.

Рис.5.


При использовании этого метода балансировки считают, что система позволяет использовать принцип суперпозиции. Расчёт корректирующих масс и мест их установки в такой системе может производиться различными способами: графическим, аналитическим или графоаналитическим.

Графические и графоаналитические расчёты с построением достаточно сложных векторных диаграмм широко использовались до появления балансировочных средств с микропроцессорами. Приёмы выполнения таких расчётов можно найти в литературе . В настоящее время они практически не используются, так как современная техника обеспечивает решение таких задач проще, точнее и быстрее.

Современная микропроцессорная техника с помощью программных средств решает задачу расчёта чаще всего аналитически. Рассмотрим, в чём заключается суть решения этой задачи.

Колебания системы ротор - опорная конструкция могут быть описаны системой уравнений (при каждом пуске двумя уравнениями с шестью неизвестными).


А0 = ? а1 D I +? а2 D II

В0 = ? в1 D I + ? в2 D II
А1 = ? а1 (D I +r п1 m п1 ) + ? а2 DII
В1 = ? в1 (D I +r п1 m п1 ) + ? в2 D II (5)
А2 = ? а1 D I + ? а2 (D II +r п2 m п2 )
В2 = ? в1 D I + ? в2 (D II +r п2 m п2 )

Где, А 0 ,А 1 ,А 2 , В 0 ,В 1 ,В 2 – амплитуды колебаний опор "а", "в" при нулевом и пробных пусках, произведённых на одной частоте.
? а1 , ? а2 , ? в1 , ? в2 – коэффициенты влияния, представляющие векторы колебаний опор "а" и "в", вызванных единичными массами mп1, mп2.
D I , D II – исходные дисбалансы в выбранных плоскостях коррекции І и ІІ.
r п1 m п1 , r п2 m п2 – внесённые дисбалансы за счёт установки единичных (пробных) масс, в плоскостях коррекции І и ІІ.

В этих уравнениях неизвестны шесть векторных величин: D I , D II , ? а1 , ? а2 , ? в2 , ? в2 . Чтобы найти их, необходимо решить систему этих уравнений. Определение коэффициентов влияния и корректирующих масс для компенсации исходных дисбалансов является достаточно сложной задачей. Однако решение такой задачи с помощью современных средств, осуществляется автоматически в процессе пусков. Определённые из уравнений (5) коэффициенты влияния можно использовать для расчёта корректирующих масс при балансировке последующих однотипных роторов без выполнения двух пробных пусков.

В тех случаях, когда число плоскостей коррекции большее, чем 2 (например, если производится балансировка одного ротора с опорами более, чем 2-е или балансировка сцепленных роторов), количество пробных пусков определяется числом плоскостей коррекции, в каждую из которых последовательно устанавливаются пробные массы. Уравнения, описывающие колебания системы, составляются аналогично, как и при двухплоскостной балансировке. Система этих уравнений и её решение усложняются, так как количество коэффициентов влияния увеличивается за счёт увеличения количества плоскостей коррекции и увеличивается количество уравнений за счёт увеличения количества пусков.

Чаще всего динамическая балансировка проводится на балансировочных станках. Обычно балансировка на станках проводится на более низких оборотах, чем рабочие обороты роторов. Это обусловлено техническими возможностями балансировочных станков. Высокооборотные балансировочные станки мало распространены из-за их дороговизны и большой энергоёмкости. Балансировка на низкооборотных станках достаточно эффективна и обеспечивает высокую точность в тех случаях, когда ротора относятся к классу жёстких роторов . Для гибких роторо в балансировка на низкооборотных станках не всегда эффективна.

Жёсткий ротор определяется как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов не будут превышать допустимые на всех частотах вращения вплоть до наибольшей эксплуатационной. Динамическая балансировка жёсткого ротора производится, как правило, в двух плоскостях.

Гибкий ротор определяется, как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов могут превышать допустимые на иных частотах вращения вплоть до наибольшей эксплуатационной . При балансировке гибких роторов используется, как правило, более двух плоскостей коррекции.


3. Выбор допуска и точности балансировки

Из практики известно, что виброскорость является наиболее объективным критерием для оценки вибрации. Исходя из этого, чаще всего оценка и нормирование вибрационного состояния производится по виброскорости. Поэтому допуск на балансировку принято устанавливать таким образом, чтобы в рабочем диапазоне оборотов иметь приемлемую виброскорость. Исходя из этих условий допустимый дисбаланс должен изменяться обратно пропорционально частоте вращения ротора. То есть чем выше рабочая частота вращения, тем меньше должен быть допустимый дисбаланс. Следовательно должна обеспечиваться следующая зависимость:
е ст w = Конст. , где е – удельный дисбаланс, w – угловая частота.
При этом предполагается, что ротор и опоры жёсткие. Величину естw приняли определяющей при классификации точности балансировки.

Классы точности балансировки жёстких роторов установлены ГОСТом 22061-76 в соответствии с международным стандартом ИСО 1949.

Согласно этой классификации каждый класс характеризуется постоянной величиной е ст w. Каждый последующий класс отличается от предыдущего в 2,5 раза. ГОСТ 22061-76 устанавливает 13 классов точности; с нулевого по двенадцатый, для различных групп жёстких роторов. Ротора газоперекачивающих агрегатов относятся к 3-ему классу точности. Значения допустимых дисбалансов рассчитываются и задаются разработчиком машин согласно ГОСТу 22061-76.


4. Особенности балансировки крупногабаритных роторов

Балансировка крупногабаритных типа ОК ТВД ГТК 10-4 роторов имеет свои особенности, хотя нет нормативных документов, устанавливающих какое - либо разделение роторов в зависимости от их габаритов. При больших длинах (более 4-х метров) и больших массах роторов (весом в несколько тонн) необходимо учитывать влияние термических деформаций на дисбалансы. При таких размерах температура роторов неодинакова в различных точках. Это обусловлено тем, что в производственных помещениях всегда имеются источники теплового излучения и конвекционных потоков. Да и сами балансировочные станки являются таковыми. Длинные ротора особенно чувствительны к малейшему перепаду температуры в радиальном направлении. Проведённые исследования влияния тепловых деформаций роторов (ОК ТВД агрегата ГТК 10-4) на дисбалансы показывают, что перепад температуры в радиальном направлении на 1єС (при длине ротора 4 и более метров) приводит к термическим дисбалансам, в 5-10 раз превышающим допуск. Для исключения ошибок при балансировке из-за тепловых деформаций необходимо обеспечить предварительную термостабилизацию балансируемых роторов. На практике это осуществляется следующим образом. Ротора, поступающие на балансировку, выдерживаются в помещении до выравнивания его температуры с температурой окружающей среды. Затем ротор устанавливается на станок и приводится во вращение. Ротора весом более 5т необходимо выдержать в режиме непрерывного вращения (или в режиме пуск – останов - пуск) в течение не менее 2-х часов и лишь после этого произвести его балансировку. В процессе вращения выравнивается температура в радиальном направлении. Если балансировка по каким - либо причинам была прервана (прекращение вращения около 1 часа и более), то её завершению вновь должна предшествовать операция вращения ротора для выравнивания температуры в радиальном направлении. При перерывах менее 2-х часов время вращения для выравнивания температуры требуется не более времени перерыва.

Внимание! У Вас нет прав для просмотра скрытого текста.


Источники информации, принятые во внимание при составлении методического пособия по балансировке роторов.

    ГОСТ 19534 – 74. Балансировка вращающихся тел. Термины.

    ГОСТ 22061 – 76 Система классов точности балансировки и методические указания.

    Руководящие указания по балансировке роторов ГТУ на балансировочном станке и в собственных подшипниках. "Оргэнергогаз" М., 1974год.

    Вибрации в технике. Т.6. Защита от вибрации и ударов. Под ред. чл.-кор. АН СССР К.В. Фролова. М. "Машиностроение", 1981г.

    Сидоренко М.К. Виброметрия газотурбинных двигателей.

    Неуравновешенность вращающихся деталей (шкивов насосов и трансмиссий- агрегатов, шинко-пневматических муфт, зубчатых колес) получается при смещении их массы в одну сторону, в ре­зультате чего смещается центр тяжести относительно оси вра­щения, а также при смещении оси вращения относительно цент­ра тяжести. Масса детали смещается из-за неоднородности ма­териала, неточности механической обработки и в результате одностороннего износа в процессе эксплуатации. Ось вращения относительно центра тяжести смещается вследствие перекосов при сборке или неточности изготовления.

    При больших оборотах вращения неуравновешенных деталей возникают неуравновешенные центробежные силы, приводящие к вибрации детали и агрегата в целом и преждевременному его износу. Поэтому вращающиеся детали должны быть тщательно сбалансированы.

    Существуют два способа балансировки: статический и дина­мический. При статической "балансировке деталь уравновеши­вают относительно оси вращения за счет уменьшения ее массы на той стороне, куда смещен центр тяжести, или увеличения массы на диаметрально противоположной стороне. При этом способе деталь находится в статическом состоянии и в слу­чае ее балансировки (уравновешивания) деталь будет оставать­ся в любом положении, в которое она поворачивается относительно оси вращения. Схема уравновешивания деталей разной длины (А, А 1) показана на рис. 130.

    Рис. 130. Схема балансировки деталей разной длины: 1 - неуравновешенная масса; 2 - уравновешенная масса

    Статическое уравновешивание производят на горизонтальных призмах, валиках или роликах. Наиболее простое устройство для статической балансировки - параллельные стенды, пред­ставляющие собой две закрепленные да основаниях направляю­щие в виде ножей, по которым- может перекатываться уравнове­шиваемая деталь.

    Ножи выверяют при помощи уровня в двух взаимно перпен­дикулярных направлениях. Для балансировки массивных дета­лей (шкивы насосов) применяют роликовые или дисковые стен­ды, у которых вместо ножей имеются шарикоподшипники или ролики.

    Статическую балансировку производят следующим образом. Уравновешиваемую деталь устанавливают на стенд «и поворотом на некоторый угол определяют ее уравновешенность. При неуравновешенности тяжелая часть детали возвращается вниз, а при уравновешенности она остается в том положении, в кото­рое поворачивается. Неуравновешенную массу детали удаляют сверлением по отметке с обеих ее сторон. Если при сверлении ослабнет конструкция детали, то в этом случае на диаметраль­но противоположной стороже при помощи винтов устанавлива­ют уравновешивающую массу (груз) в виде отдельных пласти­нок.

    Для дискообразной детали, имеющей малую длину по сравнению с ее диаметром, способ статической балансировки будет достаточным, так как неуравновешенная и уравновешенная мас­сы находятся на поперечной оси детали или близко к ней. В этом случае при вращении детали центробежные силы масс будут находиться в одной или близких плоскостях и не окажут дополнительного влияния на вал и подшипники.

    Для цилиндрической детали, имеющей сравнительно боль­шую длину (шкивы трансмиссий клиноременных передач), одно­го способа статической балансировки будет недостаточно, так как неуравновешенная и уравновешенная массы при баланси­ровке могут быть удалены от поперечной оси детали на рас стояние а. При вращении детали центробежные силы этих масс, "находящихся в разных плоскостях, создают пару сил, которые будут поворачивать деталь относительно оси вращения и соз­давать дополнительные нагрузки на вал и подшипники. В этом случае ликвидировать -влияние пары сил можно только динами­ческой балансировкой, при которой положение и величину урав­новешивающей массы определяют в динамическом состоянии детали - во время ее вращения.

    Процесс динамической балансировки осуществляют на спе­циальных станках или же непосредственно в машинах и меха­низмах на собственных подшипниках при помощи специальных приборов: виброметров, виброскопов.

    Контрольные вопросы к главе X

    1. Какие виды слесарных работ выполняют при сооружении буровых?

    2. На какие типы подразделяются болты?

    3. В каких случаях применяют болты, шпильки, винты?

    4. Для чего предназначены шайбы?

    5. Какие применяют способы стопорения резьбовых соединений?

    6. Какие по конструкции используют гаечные ключи?

    7. Какие применяют шпонки для напряженных и ненапряженных соеди­нений?

    8. В чем преимущество шлицевых соединений перед шпоночными?

    9. Какие применяют профили шлицов?

    10. Какими способами выполняют прессовые соединения?

    11. Какие существуют муфтовые соединения?

    12. Как центрируют валы, соединяемые шинно-пневматическими муфтами?

    13. Из каких элементов состоит карданная передача?

    14. Какие существуют зубчатые передачи?

    15. Какими способами проверяют зазоры зубчатых зацеплений?

    16. Из каких элементов состоит приводная роликовая цепь?

    17. Для чего служат вкладыши подшипников скольжения?

    18. Какие существуют конструкции подшипников качения?

    19. Какими способами выполняют запрессовку подшипников?

    20. Каким образом регулируют зазор в упорных и конических подшипниках?

    21. В чем заключается балансировка вращающихся деталей?

    22. Как и когда выполняют статическую и динамическую балансировку?

    ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА И ТРУДА, ЭКОНОМИКА И ПЛАНИРОВАНИЕ СООРУЖЕНИЯ БУРОВЫХ

    После сборки вращающейся сборочной единицы, в которую входят сбалансированные детали (например: валы, насадные шестерни, муфты и др.) и другие детали (шпонки, штифты, стопорные винты и др.), возникает необходимость в повторной их балансировке, так как смещение одной из деталей, даже в пределах зазоров, предусмотренных чертежом, вызывает значительную неуравновешенность.

    Несовпадение центра тяжести детали с осью вращения принято называть статической неуравновешенностью, а неравенство нулю центробежных моментов инерции – динамической неуравновешенностью.

    Статическая неуравновешенность легко обнаруживается при установке детали опорными шейками или на оправках на горизонтальные параллели (ножи, призмы, валики) или ролики, а динамическая – лишь при вращении детали. В связи с этим балансировка бывает статическая и динамическая.

    Статическая балансировка. Существует несколько методов выполнения статической балансировки. Наиболее часто встречаются в станкостроении балансировки на призмах и на дисках. Ножи, призмы и ролики должны быть калеными и шлифованными и перед балансировкой выверены на горизонтальность.

    При балансировке на горизонтальных параллелях (рис. 1) допускаемые овальность и конусность шеек оправки не должны превышать 0,01-0,015 мм, а диаметры их должны быть одинаковыми.

    Рис. 1. а – на горизонтальных параллелях (1 – центр тяжести детали; 2 – корректирующий груз); б – на дисках (1 – деталь; 2 – корректирующий груз)

    Для уменьшения коэффициента трения параллели и шейки оправки рекомендуется подвергать закалке и тщательно шлифовать. Рабочую длину параллелей можно определять по формуле:

    где d – диаметр шейки оправки.

    Ширина рабочей поверхности параллелей (ленточки) равна (см):

    где G – усилие, действующее на параллель, в кГ; Е – модуль упругости материала оправки и параллелей, в кГ/см 2 ; σ – допускаемое сжимающее напряжение в местах контакта шейки и параллели, в кГ/см 2 (для закаленных поверхностей σ=2 10 4 ÷ 3 10 4 кГ/см 2).

    Величина d в см назначается из конструктивных соображений с учетом удобства установки балансируемой детали на оправку.

    Дисбаланс определяется пробным прикреплением корректирующих грузов на поверхности балансируемой детали. Устраняется дисбаланс удалением эквивалентного количества материала с диаметрально противоположной стороны или установкой и закреплением соответствующих противовесов (корректирующих грузов).

    Статическая балансировка шкива может быть выполнена следующим образом. На ободе шкива предварительно наносят мелом черту и сообщают ему вращение. Вращение шкива повторяют 3-4 раза. Если меловая черта будет останавливаться в разных положениях, то это будет указывать на то, что шкив сбалансирован правильно. Если меловая черта каждый раз будет останавливаться в одном положении, то это значит, что часть шкива, находящаяся внизу, тяжелее противоположной. Чтобы устранить это, уменьшают массу тяжелой части высверливанием отверстий или увеличивают массу противоположной части обода шкива, высверлив отверстия, а затем заливают их свинцом.

    Чувствительность балансировки деталей весом до 10 т на горизонтальных параллелях (рис. 1, а):

    где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг.

    Чувствительность балансировки деталей весом до 10 т на дисках (рис. 1, б):

    где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг;  – коэффициент трения качения в подшипниках дисков; r – радиус цапфы дисков в см; d – диаметр оправки в см; D – диаметр дисков в см; α – угол между осью оправки и осями дисков.

    Точность балансировки на дисках больше, чем на горизонтальных призмах. Статическую балансировку чаще всего применяют для деталей типа дисков.

    Балансировка деталей и сборочных единиц может быть выполнена на балансировочных весах в резонансном режиме колеблющейся системы, которая позволяет повысить точность балансировки.

    Балансировку деталей весом до 100 кг на балансировочных весах выполняют следующим образом (рис. 2): испытываемую конструкцию 1 уравновешивают грузами 3 и разгоняют вращающуюся часть 1 конструкции до частоты вращения, превышающей частоту колебаний системы. После разгона электродвигатель отсоединяют от испытываемой конструкции, подвижная часть которой продолжает свободно вращаться, постепенно снижая скорость. Это исключает влияние возмущений от двигателя привода на колеблющуюся систему. Амплитуда смещения контрольной точки измеряют прибором 2 в момент совпадения частоты вращения шпинделя с собственной частотой колеблющейся системы, т. е. при резонансе, где амплитуда достигает наибольшего значения. Величина остаточной неуравновешенности при данном методе измерения не должна превышать 1,5-2 Г см.

    Рис. 2.

    По ряду изделий в настоящее время на основании опыта уже установились нормы допустимого смещения центра тяжести вращающихся деталей (табл. 1).

    Таблица 1. Допустимая величина смещения центра тяжести

    Группа деталей Наименование Смещение центра

    тяжести, мкм

    Группа деталей Наименование Смещение центра

    тяжести, мкм

    А Круги, роторы, валы и шкивы точных

    шлифовальных станков

    0,2-1,0 В Жесткие небольшие роторы

    электродвигателей, генераторы

    2-10
    Б Высокооборотные электродвигатели,

    приводы шлифовальных станков

    0,5-2,5 Г Нормальные электродвигатели, вентиляторы,

    детали машин и станков, быстроходные приводы и т. д.

    5-25

    Чувствительность балансировки деталей весом до 100 кг на балансировочных весах (рис. 2): F=20 ÷ 30 Г см.

    Величина дисбаланса:

    где ω – разность показаний прибора 2.

    Динамическая балансировка деталей и сборочных единиц применяется для более точного определения дисбаланса, возникающего при вращении под действием центробежных сил. Для проведения динамической балансировки деталей и комплектов типа тел вращения применяют балансировочные станки.

    Детали и комплекты типа муфт, зубчатых колес, шкивов балансируют на оправках. Оправку с деталью или сборочной единицей для балансировки устанавливают на балансировочном станке и соединяют со шпинделем станка.

    Величина дисбаланса и место его расположения определяются приборами, установленными на станке. Дисбаланс устраняют обычно сверлением отверстия в детали или направлением металла на противоположной от места дисбаланса стороне детали.

    Требуемая техническими условиями точность балансировки зависит от конструкции и назначения деталей и узлов, скорости их вращения, допустимых вибраций машины, необходимой долговечности опор.

    Статическая балансировка может уравновешивать деталь относительно ее оси вращения, но не может устранить действие сил, стремящихся повернуть деталь вдоль продольной ее оси.

    Динамическая балансировка устраняет оба вида неуравновешенности. Динамической балансировке подвергают быстроходные детали со значительным отношением длины к диаметру (роторы турбин, генераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

    Динамическую балансировку производят на специальных станках высококвалифицированные рабочие. При динамической балансировке определяют величину и положение массы, которые нужно приложить к детали или отнять от нее, чтобы деталь оказалась уравновешенной статически и динамически.

    Центробежные силы и моменты инерции, вызванные вращением неуравновешенной детали, создают колебательные движения из-за упругой податливости опор. Причем колебания их пропорциональны величине неуравновешенных центробежных сил, действующих на опоры. На этом принципе основана балансировка деталей и сборочных единиц машин.

    Динамическая балансировка, выполняемая на современных автоматизированных балансировочных станках, в интервале 1-2 мин выдает данные: глубину и диаметр сверления, массу грузов, размеры контргрузов и места, где необходимо закрепить и снять грузы, а также амплитуду колебаний опор.

    Динамической балансировке подвергаются детали и узлы длиной больше диаметра (коленчатые валы, шпиндели, роторы лопаточных машин и т. п.). Динамическая неуравновешенность, возникающая при вращении детали вследствие образования пары центробежных сил Р (рис. 3, а), может быть устранена приложением корректирующего момента от сил Р 1. Выбор плоскостей коррекции определяется конструкцией детали и удобством удаления излишков металла. Наиболее общий случай неуравновешенности детали, встречающийся на практике, показан на рис. 3, б.

    Рис. 3. Принципиальная схема динамической балансировки деталей: а – динамическая неуравновешенность детали; Р – центробежные силы от неуравновешенных масс m, расположенных на плече r; Pt – центробежные силы от корректирующих грузов; б – статическая и динамическая неуравновешенность детали; Р’ – центробежная сила от массы m’, раскладываемая на силы Р и Р”, вызывающие статическую неуравновешенность

    Выявление неуравновешенности производится на балансировочных машинах. В условиях индивидуального производства динамическую балансировку выполняют при помощи простых средств, к числу которых можно отнести, например, устройство для установки опор уравновешиваемой детали на упругие балки или на упругие (резиновые) подкладки.

    Деталь приводят во вращение до скорости, превышающей условия резонанса.

    Отключают привод (например, сбросом ремня) и замеряют амплитуду максимальных колебаний одной из опор. Прикреплением пробного груза к детали добиваются прекращения колебания этой опоры. Аналогичную процедуру выполняют в отношении другой опоры. Балансировка заканчивается по прекращении колебаний опор.

    с упругими опорами, применяемой для деталей и узлов весом до 100 т (роторы мощных турбин) – на рис. 4.

    Рис. 4. 1 – балансируемый объект; 2 – электромагнитная муфта; 3 – электродвигатель; 4 – подшипники; 5 – поддерживающие упругие стойки (рессоры); 6 – упоры, поочередно запирающие подшипники; 7 – механический рычажный индикатор для определения плоскости дисбаланса по меткам 8, вычерчиваемым острием индикатора на окрашенной колеблющейся шейке объекта; 9 – компенсирующие пробные грузы, прикрепляемые к объекту

    Балансировку ведут при поочередном закреплении опор. Угловое положение дисбаланса находят при помощи механических или электрических индикаторов. Величина дисбаланса в выбранных плоскостях коррекции определяется прикреплением пробных компенсирующих грузов. Чувствительность зависит от веса и размеров объекта.

    Балансировка на машинах рамного типа с регулируемыми компенсаторами дисбаланса применяется преимущественно для деталей и сборок малых и средних размеров весом до 100 кг.

    Уравновешивание дисбаланса осуществляется вручную и механически.

    На рис. 5 приведена схема балансировочной машины с ручным перемещением компенсирующего груза 3 на шпинделе станка.

    Рис. 5. 1 – рама; 2 – балансируемая деталь, сборка; 3 – компенсатор дисбаланса

    Груз 3 перемещают в радиальном и окружном направлениях и вручную корректируют его вес. Так определяют эквивалентное количество материала для удаления с детали. Дисбаланс определяют только в плоскости коррекции 1–1. Поэтому для определения дисбаланса детали в другой плоскости 2–2 необходимо ее переустановить с поворотом на 180° для определения величины и местоположения компенсатора в этой плоскости. Машина требует предварительной настройки по эталонной детали; колебания рамы вокруг горизонтальной оси отмечаются механическим измерителем амплитуды; величина неуравновешенных моментов в выбранных плоскостях коррекции определяется с точностью 10 -15 Г см 2 .