Возможны ли путешествия во времени? Путешествие во времени: возможно ли? Большой адронный коллайдер.

Со времен эпохи королевы Виктории и до сегодняшнего дня понятие путешествий во времени будоражило умы любителей фантастики. Каково это - путешествовать сквозь четвертое измерение? Самое интересное, что для путешествий во времени не нужна машина времени или нечто вроде «кротовой норы».

Вы наверняка заметили, что мы постоянно перемещаемся во времени. Движемся сквозь него. На базовом уровне понятия время ­- это скорость изменения Вселенной, и вне зависимости от того, нравится нам это или нет, мы подвержены постоянным изменениям. Стареем, планеты движутся вокруг Солнца, вещи разрушаются.

Мы измеряем ход времени секундами, минутами, часами и годами, но это совсем не означает, что время течет с постоянной скоростью. Как вода в реке, время идет по-разному в разных местах. Короче говоря, время относительно.

Но что вызывает временные флуктуации на пути от колыбели до могилы? Все сводится к отношению между временем и пространством. Человек способен воспринимать в трех измерениях - длина, ширина и глубина. Время же дополняет эту партию как самое важное четвертое измерения. Время не существует без пространства, пространство не существует вне времени. И эта парочка соединяется в пространственно-временной континуум. Любое событие, происходящее во Вселенной, должно вовлекать пространство и время.

В этой статье мы рассмотрим наиболее реальные и повседневные возможности путешествия сквозь время в нашей вселенной, а также менее доступные, но от этого не менее возможные пути сквозь четвертое измерение.

Поезд - реальная машина времени.

Если вы хотите прожить пару лет немного быстрее, чем кто-то другой, вам нужно управляться с пространством-временем. Спутники глобального позиционирования совершают это каждый день, обгоняя естественный ход времени на три миллиардных доли секунды. На орбите время течет быстрее, поскольку спутники находятся далеко от массы Земли. А на поверхности масса планеты увлекает за собой время и замедляет его в относительно небольших масштабах.

Этот эффект называется гравитационным замедлением времени. Согласно общей теории относительности Эйнштейна, гравитация искривляет пространство-время, и астрономы используют это следствие, когда изучают свет, проходящий вблизи массивных объектов (о гравитационном линзировании мы писали и ).

Но какое отношение это имеет ко времени? Помните - любое событие, происходящее во вселенной, вовлекает как пространство, так и время. Гравитация не только стягивает пространство, но и время.

Будучи в потоке времени, вы едва ли заметите изменение его хода. Но достаточно массивные объекты - вроде сверхмассивной черной дыры альфы Стрельца, расположенной в центре нашей галактики - будут серьезно искривлять ткань времени. Масса ее точки сингулярности - 4 миллиона солнц. Такая масса замедляет время в два раза. Пять лет на орбите черной дыры (без падения в нее) - это десять лет на Земле.

Скорость движения тоже играет важную роль в скорости течения нашего времени. Чем ближе вы подходите к максимальной скорости движения - скорости света - тем медленнее течет время. Часы в быстро идущем поезде к концу путешествия начнут «опаздывать» на одну миллиардную секунды. Если поезд достигнет скорости в 99,999% световой, за один год в вагоне поезда можно перенестись на двести двадцать три года в будущее.

По сути, на этой идее строятся гипотетические путешествия в будущее в будущем, простите за тавтологию. Но как насчет прошлого? Можно ли повернуть время вспять?

Временные путешествия в прошлое

Звезды - пережитки прошлого.

Мы выяснили, что путешествие в будущее происходит все время. Ученые доказали это экспериментально, и эта идея лежит в основе теории относительности Эйнштейна. В будущее вполне можно переместиться, вопросом остается только «насколько быстро»? Что касается путешествий в прошлое, то для ответа на этот вопрос нужно взглянуть в ночное небо.

Галактика Млечный Путь шириной примерно в 100 000 лет, а значит, свету от далеких звезд нужно преодолеть тысячи и тысячи лет, прежде чем он достигнет Земли. Уловите этот свет, и по сути, вы просто заглянете прошлое. Когда астрономы измеряют космическое микроволновое излучение, они заглядывают в тот космос, каким он был 10 миллиардов лет назад. Но все ли это?

В теории относительности Эйнштейна нет ничего, что исключало бы возможность путешествие в прошлое, но само возможное существование кнопки, которая могла бы вернуть вас во вчерашний день, нарушает закон причинности или причины и следствия. Когда во вселенной что-то происходит, событие порождает новую бесконечную цепочку событий. Причина всегда рождается раньше следствия. Просто представьте себе мир, где жертва бы умирала до того, как пуля попадет ей в голову. Это нарушение действительности, но несмотря на это, многие ученые не исключают возможности путешествий в прошлое.

Например, полагают, что движение быстрее скорости света может отправить назад в прошлое. Если время замедляется по мере того, как объект приближается к скорости света, то может преодоление этого барьера повернет время вспять? Конечно, при приближении к скорости света растет и релятивистская масса объекта, то есть приближается к бесконечности. Ускорить бесконечную массу представляется невозможным. Теоретически, варп-скорость, то есть деформация скорости как таковой, может обмануть универсальный закон, но даже это потребует колоссальных затрат энергии.

А что, если путешествия во времени в будущее и прошлое зависят не столько на наших базовых знаниях космоса, а больше от существующих космических феноменов? Давайте взглянем на черную дыру.

Черные дыры и кольца Керра

Что находится по ту сторону черной дыры?

Покружитесь около черной дыры достаточно долго и гравитационное замедление времени забросит вас в будущее. Но что, если вы угодите прямо в пасть этого космического монстра? О том, что будет при погружении в черную дыру, мы уже писали , но не упоминали такую экзотическую разновидность черных дыр, как кольцо Керра . Или черная дыра Керра.

В 1963 году новозеландский математик Рой Керр предложил первую реалистическую теорию вращающейся черной дыры. Концепция включает нейтронные звезды ­- массивные коллапсирующие звезды размером с Санкт-Петербург, например, но с массой земного Солнца. Нейтронные дыры мы включили в список , обозвав их магнетарами . Керр предположил, что если умирающая звезда сколлапсирует во вращающееся кольцо нейтронных звезд, их центробежная сила не даст им превратиться в сингулярность. И поскольку у черной дыры не будет точки сингулярности, Керр посчитал, что вполне можно будет попасть внутрь, без страха быть разорванным гравитацией в центре.

Если черные дыры Керра существуют, мы могли бы пройти сквозь них и выйти в белую дыру. Это как выхлопная труба черной дыры. Вместо того, чтобы засасывать все, что только можно, белая дыра будет, напротив, выбрасывать все, что можно. Возможно, даже в другом времени или другой Вселенной.

Черные дыры Керра остаются теорией, но если они действительно существуют, они являются своего рода порталами, предлагающими одностороннее путешествие в будущее или прошлое. И хотя чрезвычайно развитая цивилизация могла бы развиваться таким образом и перемещаться во времени, никто не знает, когда «дикая» черная дыра Керра исчезнет.

Кротовые норы (червоточины)

Искривление пространства-времени.

Теоретические кольца Керра являются не единственным способом возможных «сокращенных» путей в прошлое или будущее. В научно-фантастических фильмах - от «Звездного пути» до «Донни Дарко» - часто рассматривается теоретический мост Эйнштейна-Розена . Вам эти мосты более известны под названием червоточин .

Эйнштейна допускает существование червоточин, поскольку в основе теории великого физика лежит искривление пространства-времени под воздействием массы. Чтобы понять эту кривизну, представьте себе ткань пространства-времени в виде белого листа и согните его пополам. Площадь листа останется прежней, сам он не деформируется, но вот расстояние между двумя точками соприкосновение явно будет меньшим, чем когда лист лежал на плоской поверхности.

В этом упрощенном примере пространство изображается в виде двухмерной плоскости, а не четырехмерной, каким на самом деле и является (вспомним четвертое измерение - время). Аналогично работают и гипотетические кротовые норы.

Перенесемся в космос. Концентрация массы в двух разных частях Вселенной могла бы создать своеобразный туннель в пространстве-времени. В теории этот туннель соединил бы два разных отрезка пространственно-временного континуума между собой. Разумеется, вполне возможно, что какие-нибудь физические или квантовые свойства не дают таким червоточинам зарождаться самостоятельно. Ну или они рождаются и тут же гибнут, будучи нестабильными.

По словам Стивена Хокинга, десять самых интересных фактов из жизни которого мы вам , червоточины могут существовать в квантовой пене - самой мелкой среде во Вселенной. Крошечные туннели постоянно рождаются и разрываются, связывая отдельные места и время на короткие мгновения.

Кротовые норы могут оказаться слишком малы и кратковременными для перемещения человека, но вдруг однажды мы сможем их найти, удержать, стабилизировать и увеличить? При условии, как отмечает Хокинг, что вы будете готовы к обратной связи. Если мы захотим искусственным образом стабилизировать туннель пространства-времени, радиация от наших действий может его уничтожить, как обратный ход звука может повредить динамик.


Мы пытаемся протиснуться сквозь черные дыры и червоточины, но, может, есть другой способ путешествий во времени с использованием теоретического космического феномена? С этими мыслями мы обращаемся к физику Дж. Ричарду Готту, который изложил идею космической струны в 1991 году. Как следует из названия, это гипотетические объекты, которые могли сформироваться на ранних этапах развития вселенной.

Эти струны пронизывают всю Вселенную, будучи тоньше атома и находясь под сильным давлением. Естественно, из этого следует, что они дают гравитационную тягу всему, что проходит рядом с ними, а значит объекты, прикрепленные к космической струне, могут путешествовать во времени с невероятной скоростью. Если подтянуть две космические струны поближе друг к другу или расположить одну из них рядом с черной дырой, можно создать то, что называется замкнутой времениподобной кривой.

Используя гравитацию, производимую двумя космическими струнами (или струной и черной дырой), космический корабль теоретически мог бы отправить себя в прошлое. Для этого нужно было бы сделать петлю вокруг космических струн.

Между прочим, квантовые струны сейчас очень горячо обсуждаемые. Готт заявил, что для путешествия назад во времени, нужно сделать петлю вокруг струны, содержащей половину массы-энергии целой галактики. Другими словами, половину атомов в галактике пришлось бы задействовать как топливо для вашей машины времени. Ну и как всем хорошо известно, нельзя вернуться во времени раньше, чем была создана сама машина.

Кроме того, существуют и временные парадоксы .

Парадоксы путешествий во времени

Убил деда - убил себя.

Как мы уже сказали, идея путешествия в прошлое слегка омрачается второй частью закона причинности. Причина следует перед следствием, как минимум в нашей вселенной, а значит может испортить даже самые продуманные планы путешествий во времени.

Для начала представьте: если вы отправитесь в прошлое на 200 лет, вы появитесь задолго до своего рождения. Подумайте об этом секунду. В течение какого-то времени следствие (вы) будет существовать прежде причины (ваше рождение).

Чтобы лучше понять, с чем мы имеем дело, рассмотрим известный парадокс деда. Вы - убийца, который путешествует во времени, вшаа цель - ваш собственный дедушка. Вы проникаете сквозь ближайшую кротовую нору и подходите к живой 18-летней версии отца вашего отца. Вы поднимаете пистолет, но что происходит, когда вы нажимаете на спусковой крючок?

Подумайте. Вы еще не родились. Даже ваш отец еще не родился. Если вы убьете деда, у него не будет сына. Этот сын никогда не родит вас, и вы не сможете отправиться в прошлое, выполняя кровавую задачу. И ваше отсутствие никак не нажмет на курок, тем самым отрицая всю цепочку событий. Мы называем это петлей несовместимых причин.

С другой стороны, можно рассмотреть идею последовательной причинной петли. Она, хоть и заставляет задуматься, теоретически избавляет от временных парадоксов. По мнению физика Пола Дэвиса, подобная петля выглядит следующим образом: профессор математики отправляется в будущее и похищает сложнейшую математическую теорему. После этого выдает ее самому блестящему студенту. После этого перспективный студент растет и учится с тем, чтобы однажды стать человеком, у которого профессор однажды спер теорему.

Кроме того, есть еще одна модель путешествий во времени, которая включает в себя искажение вероятности при приближении к возможности парадоксального события. Что это означает? Давайте вернемся в шкуру убийцы вашего деушки. Эта модель путешествия во времени может убить вашего дедушку виртуально. Вы можете нажать на курок, но пистолет не сработает. Птичка чирикнет в нужный момент или произойдет еще что-нибудь: квантовая флуктуация не даст парадоксальной ситуации состояться.

И наконец, самое интересное. Будущее или прошлое, в которое вы отправитесь, попросту может существовать в параллельной Вселенной. Представим это как парадокс разделения. Вы можете уничтожить все, что угодно, но на ваш домашний мирок это никак не повлияет. Вы убьете деда, но не исчезнете ­- исчезнет, возможно, другой «вы» в параллельном мире, ну или сценарий пойдет по уже рассмотренным нами схемам парадокса. Однако, вполне возможно, что такое путешествие во времени будет одноразовым и вы никогда не сможете вернуться домой.

Совсем запутались? Добро пожаловать в мир путешествий во времени.

Идея, что можно попасть в прошлое или будущее, породила целый жанр хронофантастики, - и кажется, что все возможные парадоксы и подводные камни нам давно известны. Теперь мы читаем и смотрим такие произведения не ради того, чтобы взглянуть на другие эпохи, а ради путаницы, которая неизбежно возникает при попытках нарушить ход времени. Какие же фокусы со временем лежат в основе всех хроноопер и какие сюжеты можно собрать из этих кирпичиков? Давайте разбираться.

Разбудите, когда наступит будущее

Самая простая задача для путешественника во времени - попасть в будущее. В таких историях можно даже не продумывать, как именно устроен временной поток: поскольку будущее на наше время не влияет, сюжет почти не будет отличаться от полёта на другую планету или в сказочный мир. В каком-то смысле все мы и так путешествуем во времени - со скоростью одна секунда в секунду. Вопрос только в том, как увеличить скорость.

В XVIII-XIX веках одним из фантастических явлений считались сновидения. Летаргический сон приспособили для путешествий в будущее: Рип ван Винкль (герой одноимённого рассказа Вашингтона Ирвинга) проспал двадцать лет и очутился в мире, где все его близкие уже умерли, а его самого успели забыть. Такой сюжет сродни ирландским мифам о народе холмов, который тоже умел манипулировать временем: тот, кто провёл под холмом одну ночь, возвращался через сотню лет.

Этот метод «попадания» не устаревает

С помощью снов писатели того времени объясняли любые фантастические допущения. Если рассказчик сам допускает, что диковинные миры ему привиделись, какой с него спрос? К такой хитрости прибегнул Луи-Себастьен де Мерсье, описывая «сон» об утопическом обществе («Год 2440»), - а это уже полноценное путешествие во времени!

Впрочем, если путешествие в будущее нужно правдоподобно обосновать, сделать это без противоречий с наукой тоже несложно. Прославленный «Футурамой» метод криогенной заморозки в теории может сработать - поэтому сейчас многие трансгуманисты стараются сохранить свои тела после смерти в надежде, что медицинские технологии будущего позволят их оживить. Правда, по сути это просто адаптированный под современность сон ван Винкля, поэтому сложно сказать, считать ли это «настоящим» путешествием.

Быстрее света

Для тех, кто хочет всерьёз поиграть со временем и углубиться в дебри физики, лучше подойдёт путешествие со скоростью света.


Теория относительности Эйнштейна позволяет на околосветовых скоростях сжимать и растягивать время, чем в фантастике с удовольствием пользуются. Знаменитый «парадокс близнецов» гласит, что если долго носиться по космосу на околосветовой скорости, за год-другой таких полётов на Земле пройдёт пара веков.

Более того: математик Гёдель предложил для уравнений Эйнштейна такое решение, при котором во вселенной могут возникать временные петли - нечто вроде порталов между разными временами. Именно этой моделью воспользовались в фильме « », сперва показав разницу в течении времени возле горизонта чёрной дыры, а потом и прокинув с помощью «кротовой норы» мостик в прошлое.

Все сюжетные повороты, которые сейчас придумывают авторы хроноопер, уже были у Эйнштейна и Гёделя (снято на iPhone 5)

Можно ли таким образом попасть в прошлое? Учёные в этом сильно сомневаются, но фантастам их сомнения не мешают. Достаточно заявить, что превышать скорость света запрещено только простым смертным. А Супермен может сделать вокруг Земли пару оборотов и вернуться в прошлое, чтобы предотвратить гибель Лоис Лейн. Да что там скорость света - даже сон может работать в обратном направлении! А у Марка Твена янки получил ломом по голове и при дворе короля Артура.

Конечно, в прошлое летать интереснее - как раз потому, что оно неразрывно связано с настоящим. Если автор вводит в историю машину времени, он обычно хочет как минимум запутать читателя временными парадоксами. Но чаще всего главная тема в таких историях - борьба с предопределением. Можно ли изменить собственную судьбу, если она уже известна?

Причина или следствие?

Ответ на вопрос о предопределении - как и сама концепция путешествия во времени - зависит от того, по какому принципу устроено время в конкретном фантастическом мире.

Терминаторам законы физики не указ

В реальности главная проблема с путешествием в прошлое не скорость света. Если отправить назад во времени что угодно, хотя бы сообщение, это нарушит фундаментальный закон природы: принцип причинности. Даже самое захудалое пророчество - уже в каком-то смысле путешествие во времени! Все известные нам научные принципы строятся на том, что сперва происходит событие, а потом у него возникают последствия. Если следствие опережает причину, это ломает законы физики.

Чтобы «починить» законы, надо придумать, как мир реагирует на такую аномалию. Тут-то фантасты и дают волю воображению.

Если жанр фильма - комедия, то риска «сломать» время обычно нет: все поступки героев слишком малозначительны, чтобы повлиять на будущее, и главная задача - выпутаться из собственных проблем

Можно заявить, что время - единый и неделимый поток: между прошлым и будущим как бы натянута нить, по которой можно перемещаться.

Именно в такой картине мира возникают самые известные петли и парадоксы: например, если в прошлом убить своего дедушку, можно исчезнуть из вселенной. Появляются парадоксы из-за того, что эта концепция (философы называют её «Б-теорией») утверждает: прошлое, настоящее и будущее столь же реальны и неизменны, как и привычные нам три измерения. Будущее пока что неизвестно - но рано или поздно мы увидим тот единственный вариант событий, который должен произойти.

Такой фатализм порождает самые ироничные истории о путешественниках во времени. Когда пришелец из будущего пытается исправить события прошлого, он внезапно обнаруживает, что сам стал их причиной, - более того, так было всегда. Время в таких мирах не переписывается - в нём просто возникает причинно-следственная петля, и любые попытки что-то изменить лишь закрепляют изначальный вариант. Этот парадокс одним из первых подробно описал в новелле «По собственным следам» (1941), где оказывается, что герой выполнял задание, полученное от самого себя.

Герои мрачного сериала «Тьма» от Netflix отправляются в прошлое, чтобы расследовать преступление, но поневоле вынуждены сами совершать поступки, которые к этому преступлению ведут

Бывает и хуже: в более «гибких» мирах неосторожный поступок путешественника может привести к «эффекту бабочки». Вмешательство в прошлое переписывает разом весь временной поток - и мир не просто меняется, а напрочь забывает, что изменился. Обычно только сам путешественник помнит, что раньше всё было иначе. В трилогии « » за прыжками Марти не мог уследить даже док Браун - но он хотя бы полагался на слова товарища, когда тот описывал изменения, а обычно таким историям просто никто не верит.

В общем, однопоточное время - штука запутанная и безысходная. Многие авторы решают себя не ограничивать и прибегают к помощи параллельных миров.

Сюжет, в котором герой оказывается в мире, где его рождение кто-то отменил, пошёл от рождественского фильма «Эта прекрасная жизнь» (1946)

Раздвоение времени

Эта концепция не только позволяет избавиться от противоречий, но ещё и захватывает воображение. В таком мире возможно всё: каждую секунду он делится на бесконечное множество похожих друг на друга отражений, отличающихся парой мелочей. Путешественник во времени на самом деле ничего не меняет, а лишь скачет между разными гранями мультиверсума. Такой сюжет очень любят в сериалах: почти в любом шоу найдётся серия, где герои оказываются в альтернативном будущем и пытаются вернуть всё на круги своя. На бесконечном поле и резвиться можно бесконечно - и никаких парадоксов!

Сейчас в хронофантастике чаще всего используют модель с параллельными мирами (кадр из «Звёздного пути»)

Но самое интересное начинается, когда авторы отказываются от «Б-теории» и решают, что фиксированного будущего не бывает. Может, неизвестность и неопределённость и есть нормальное состояние времени? В такой картине мира конкретные события происходят только на тех отрезках, на которых есть наблюдатели, а остальные моменты - всего лишь вероятность.

Прекрасный пример такого «квантового времени» показал Стивен Кинг в « ». Когда Стрелок невольно создал временной парадокс, он едва не сошёл с ума, потому что помнил одновременно две линии событий: в одной он путешествовал в одиночку, в другой со спутником. Если герою попадались на глаза свидетельства, напоминавшие о прошлых событиях, воспоминания об этих точках складывались в одну непротиворечивую версию, но промежутки были словно в тумане.

Квантовый подход в последнее время популярен - отчасти благодаря развитию квантовой физики, а отчасти потому, что он позволяет показывать ещё более запутанные и драматичные парадоксы.

Марти Макфлай едва не стёр себя из реальности, помешав своим родителям познакомиться. Пришлось срочно всё исправлять!

Взять, например, фильм «Петля времени» (2012): как только молодое воплощение героя совершало какие-то действия, пришелец из будущего тут же их вспоминал - а до того в его памяти царил туман. Поэтому он старался не вмешиваться лишний раз в своё прошлое - например, не показывал молодому себе фотографию будущей жены, чтобы не сорвать их первую неожиданную встречу.

«Квантовый» подход виден и в « »: раз Доктор предупреждает спутников о специальных «фиксированных точках» - событиях, которые нельзя изменить или обойти, - значит, вся остальная ткань времени подвижна и пластична.

Впрочем, даже вероятностное будущее блекнет по сравнению с мирами, где Время обладает собственной волей - или на его страже стоят существа, подстерегающие путешественников. В такой вселенной законы могут работать как угодно - и хорошо ещё, если со стражами можно договориться! Самый яркий пример - лангольеры , которые после каждой полуночи съедают вчерашний день вместе со всеми, кому не повезло там оказаться.

Как работает машина времени

На фоне такого разнообразия вселенных сама техника путешествий во времени - вопрос второстепенный. Со времён машины времени не изменились: можно придумать новый принцип действия, но вряд ли это повлияет на сюжет, и со стороны путешествие будет выглядеть примерно одинаково.

Машина времени Уэллса в экранизации 1960 года. Вот где стимпанк!

Чаще всего принцип работы вообще не объясняют: человек залезает в кабинку, любуется гудением и спецэффектами, а потом выбирается уже в другом времени. Этот способ можно назвать мгновенным скачком: ткань времени словно прокалывается в одной точке. Нередко для такого прыжка сперва надо разогнаться - набрать скорость в обычном пространстве, а техника уже переведёт этот импульс в скачок во времени. Так поступали и героиня аниме «Девочка, покорившая время», и док Браун на знаменитом DeLorean из трилогии «Назад в будущее». Видимо, ткань времени - из тех препятствий, которые штурмуют с разбега!

DeLorean DMC-12 - редкая машина времени, которая вправе называться машиной (JMortonPhoto.com & OtoGodfrey.com )

Но иногда бывает наоборот: если считать время четвёртым измерением, в трёх обычных измерениях путешественник должен оставаться на месте. Машина времени помчит его по временной оси, и в прошлом или будущем он появится ровно в той же точке. Главное, чтобы там не успели ничего построить, - последствия могут быть очень неприятными! Правда, в такой модели не учитывают вращение Земли - на самом-то деле неподвижных точек не бывает, - но в крайнем случае всё можно списать на магию. Именно так работал : каждый оборот волшебных часов соответствовал одному часу, но с места путешественники не двигались.

Суровее всего с такими «статичными» путешествиями обошлись в фильме «Детонатор» (2004): там машина времени проматывала ровно минуту за минуту. Чтобы попасть во вчерашний день, надо было просидеть в железной коробке целых 24 часа!

Иногда модель, в которой больше трёх измерений, трактуют ещё хитрее. Вспомним теорию Гёделя, согласно которой между разными временами можно прокладывать петли и тоннели. Если она верна, через дополнительные измерения можно попробовать пробраться в другое время - чем и воспользовался герой « ».

В более ранней фантастике по схожему принципу работала «воронка времени»: некое подпространство, куда можно попасть специально (на TARDIS Доктора Кто) или случайно, как произошло с экипажем эсминца в фильме «Филадельфийский эксперимент» (1984). Полёт по воронке обычно сопровождается головокружительными спецэффектами, а выходить из корабля не рекомендуется, чтобы не потеряться во времени навсегда. Но по сути это всё та же обычная машина времени, доставляющая пассажиров из одного года в другой.

Внутри временных воронок почему-то всегда бьют молнии и иногда летают титры

Если же авторы не хотят углубляться в дебри теорий, аномалия времени может существовать сама по себе, без всяких приспособлений. Достаточно войти не в ту дверь, и вот герой уже в далёком прошлом. Тоннель это, точечный прокол или магия - кто его разберёт? Главный вопрос - как выбраться обратно!

Чего сделать нельзя

Впрочем, обычно фантастика всё-таки работает по правилам, пусть и вымышленным, - поэтому для путешествий во времени часто придумывают ограничения. Например, можно вслед за современными физиками заявить, что перемещать тела быстрее скорости света (то есть в прошлое) всё-таки нельзя. Но в некоторых теориях есть частица под названием «тахион», на которую это ограничение не действует, потому что у неё нет массы… Может, сознание или информацию всё-таки можно отправить в прошлое?

Когда за путешествия во времени берётся Макото Синкай, у него всё равно получается трогательная история о дружбе и любви («Твоё имя»)

В реальности, скорее всего, так смухлевать не получится - всё из-за того же принципа причинности, которому до типа частиц нет дела. Но в фантастике «информационный» подход кажется более правдоподобным - да ещё и оригинальным. Он позволяет герою, например, оказаться в собственном молодом теле или отправиться в путешествие по чужим сознаниям, как происходило с героем сериала «Квантовый скачок». А в аниме Steins;Gate поначалу умели отправлять в прошлое только SMS - попробуй измени ход истории с такими ограничениями! Но от ограничений сюжеты только выигрывают: чем сложнее задача, тем интереснее смотреть, как её решают.

Гибрид телефона с микроволновкой для связи с прошлым (Steins;Gate)

Иногда дополнительные условия накладывают и на обычные, физические путешествия во времени. Например, зачастую машина времени не может отправить никого в прошлое раньше того момента, когда она была изобретена. А в аниме «Меланхолия Харухи Судзумии» путешественники во времени разучились отправляться в прошлое дальше определённой даты, потому что в этот день произошла катастрофа, повредившая ткань времени.

И тут начинается самое интересное. Незамысловатые скачки в прошлое и даже временные парадоксы - это лишь вершина айсберга хронофантастики. Если время можно изменить или даже повредить, что ещё с ним можно сделать?

Парадокс на парадоксе

Путешествия во времени мы любим за путаницу. Даже простой скачок в прошлое порождает такие завихрения, как «эффект бабочки» и «парадокс дедушки», - в зависимости от того, как устроено время. Но на этом приёме можно строить куда более сложные комбинации: например, прыгнуть в прошлое не единожды, а несколько раз подряд. Так создаётся стабильная временная петля, или «день сурка».

У вас бывает дежа-вю?
- А разве ты меня об этом уже не спрашивала?

Зациклить можно один день или несколько - главное, чтобы всё заканчивалось «сбросом» всех изменений и путешествием обратно в прошлое. Если мы имеем дело с линейным и неизменным временем, такие петли сами возникают из причинно-следственных парадоксов: герой получает записку, отправляется в прошлое, пишет эту записку, отправляет самому себе… Если же время каждый раз переписывается или порождает параллельные миры, получается идеальная ловушка: человек раз за разом переживает одни и те же события, но любые изменения всё равно заканчиваются сбросом на исходную позицию.

Чаще всего такие сюжеты посвящены попыткам разгадать причину временной петли и вырваться из неё. Иногда петли завязаны на эмоции или трагические судьбы персонажей - особенно этот элемент любят в аниме («Девочка-волшебница Мадока», «Меланхолия Харухи Судзумии», «Когда плачут цикады»).

Но у «дней сурка» есть несомненный плюс: они позволяют за счёт бесконечных попыток рано или поздно добиться успеха в любом начинании. Недаром Доктор Кто, попав в такую ловушку, вспоминал легенду о птичке, которая за многие тысячи лет по крошке сточила каменную скалу, а его коллега ухитрился своими «переговорами» довести до белого каления внеземного демона! В таком случае разрушить петлю можно не геройским поступком или прозрением, а обычным упорством, - и по пути научиться паре-тройке полезных навыков, как случилось с героем «Дня сурка».

В «Грани будущего» инопланетяне используют временные петли в качестве оружия - чтобы просчитать идеальную тактику боя

Ещё один способ построить из обычных прыжков более сложную конструкцию - синхронизировать два отрезка времени. В фильме «Люди Икс: Дни минувшего будущего» и в «Разведчике времени» временной портал умели открывать только на фиксированное расстояние. Грубо говоря, в полдень воскресенья можно переместиться в полдень субботы, а час спустя - уже только в час дня. При таком ограничении в истории о путешествии в прошлое появляется элемент, которого там, казалось бы, не может быть - цейтнот! Да, можно отправиться назад и попытаться что-то исправить, но в будущем время идёт своим чередом - и герой, например, может опоздать вернуться.

Чтобы усложнить путешественнику жизнь, можно сделать прыжки во времени случайными - отобрать у него контроль над происходящим. В сериале «Остаться в живых» такая беда случилась с Десмондом, который слишком плотно взаимодействовал с временной аномалией. Но ещё в 1980-х на той же идее построили сериал «Квантовый скачок». Герой постоянно оказывался в разных телах и эпохах, но не знал, сколько продержится в этом времени, - и уж тем более не мог вернуться «домой».

Крутим время

Героиня игры Life is Strange встаёт перед трудным выбором: отменить все правки, которые она вносила в ткань времени ради спасения подруги, или погубить целый город

Второй приём, с помощью которого разнообразят путешествия во времени, - изменение скорости. Если можно промотать пару лет, чтобы оказаться в прошлом или будущем, почему бы, например, не поставить время «на паузу»?

Как показал ещё Уэллс в рассказе «Новейший ускоритель», даже замедление времени для всех, кроме себя - очень мощный инструмент, а уж если его совсем остановить, можно куда-нибудь тайно проникнуть или выиграть дуэль - причём совершенно незаметно для противника. А в веб-сериале «Червь» один супергерой умел «замораживать» предметы во времени. С помощью этого нехитрого приёма можно было, например, пустить под откос поезд, поставив у него на пути обычный лист бумаги, - ведь застывший во времени объект не может измениться или сдвинуться!

Застывшие во времени враги - это очень удобно. В шутере Quantum Break в этом можно убедиться лично

Скорость можно изменить и на отрицательную, и тогда получатся знакомые читателям Стругацких контрамоты - люди, живущие «в обратную сторону». Такое возможно только в мирах, где работает «Б-теория»: вся временная ось уже предопределена, вопрос только в том, в каком порядке мы её воспринимаем. Чтобы ещё сильнее запутать сюжет, можно запустить в разных направлениях двух путешественников во времени. Так случилось с Доктором и Ривер Сонг в сериале «Доктор Кто»: они скакали по эпохам туда-сюда, но первая (для Доктора) их встреча для Ривер была последней, вторая - предпоследней, и так далее. Чтобы избежать парадоксов, героине приходилось следить, чтобы случайно не проспойлерить Доктору его будущее. Потом, правда, порядок их встреч превратился в полную чехарду, но героям «Доктора Кто» к такому не привыкать!

Миры со «статичным» временем порождают не только контрамотов: нередко в фантастике появляются существа, которые одновременно видят все точки своего жизненного пути. Трафальмадорцы из «Бойни номер пять» благодаря этому относятся к любым злоключениям с философским смирением: для них даже смерть - всего лишь одна из многочисленных деталей общей картины. Доктор Манхэттен из « » из-за такого нечеловеческого восприятия времени отдалился от людей и ударился в фатализм. Абраксас из «Бесконечного путешествия» регулярно путался в грамматике, силясь понять, какое событие уже произошло, а какое будет завтра. А у инопланетян из рассказа Теда Чана «История твоей жизни» возник особенный язык: все, кто его выучил, тоже начинали одновременно видеть прошлое, настоящее и будущее.

Фильм «Прибытие», снятый по мотивам «Истории твоей жизни», начинается с флешбэков… Или нет?

Впрочем, если контрамоты или трафальмадорцы действительно путешествуют во времени, то со способностями Ртути или Флэша всё не так очевидно. Ведь на самом деле это они ускоряются относительно всех остальных - разве можно считать, что на самом деле замедляется весь мир вокруг?

Физики заметят, что теория относительности недаром называется именно так. Можно и мир ускорить, и наблюдателя замедлить - это одно и то же, вопрос только в том, что взять за точку отсчёта. А биологи скажут, что никакой фантастики здесь нет, ведь время - понятие субъективное. Обычная муха тоже видит мир «в слоу-мо» - так быстро её мозг обрабатывает сигналы. Но можно не ограничиваться мухой или Флэшем, ведь в некоторых хронооперах существуют параллельные миры. Кто мешает пустить в них время с разной скоростью - или даже в разные стороны?

Известный пример такого приёма - «Хроники Нарнии», где формально путешествий во времени нет. Но время в Нарнии течёт куда быстрее, чем на Земле, поэтому одни и те же герои попадают в разные эпохи - и наблюдают историю сказочной страны от её создания до падения. А вот в комиксе Homestuck, который, пожалуй, можно назвать самой запутанной историей о путешествиях во времени и параллельных мирах, два мира запустили в разных направлениях - и при контактах между этими вселенными возникала та же неразбериха, что у Доктора с Ривер Сонг.

Если циферблаты ещё не изобрели, песочные часы тоже сойдут («Принц Персии»)

Убить время

На основе любого из этих приёмов можно написать рассказ, от которого даже у Уэллса затрещала бы голова. Но современные авторы с удовольствием пользуются всей палитрой сразу, завязывая в клубок временные петли и параллельные миры. Парадоксы при таком подходе накапливаются пачками. Даже при одном прыжке в прошлое путешественник может ненароком убить своего дедушку и исчезнуть из реальности - а то и стать собственным отцом. Пожалуй, лучше всех над «парадоксом причинности» поиздевался в рассказе «Все вы, зомби», где герой оказывается сам себе и папой, и мамой.

По рассказу «Все вы, зомби» снят фильм «Патруль времени» (2014). Практически все его персонажи - это один и тот же человек

Само собой, парадоксы надо как-то разрешать, - поэтому в мирах с линейным временем оно часто восстанавливается само, по воле судьбы. Например, почти все начинающие путешественники первым делом решают убить Гитлера. В мирах, где время можно переписывать, он погибнет (но по закону подлости получившийся мир будет ещё хуже). У Асприна в «Разведчиках времени» покушение провалится: либо пистолет заклинит, либо ещё что-нибудь произойдёт.

А в мирах, где фатализм не в почёте, приходится следить за сохранностью прошлого самостоятельно: для таких случаев создают специальную «полицию времени», которая отлавливает путешественников, пока они не натворили бед. В фильме «Петля времени» роль такой полиции взяла на себя мафия: прошлое для них - слишком ценный ресурс, чтобы позволять кому-то его портить.

Если нет ни судьбы, ни хронополицейских, путешественники рискуют попросту сломать время. В лучшем случае получится как в цикле Джаспера Ффорде «Четверг Нонетот», где полиция времени доигралась до того, что случайно отменила само изобретение путешествий во времени. В худшем - разрушится ткань реальности.

Как не раз показывали в «Докторе Кто», время - вещь хрупкая: от одного взрыва могут пойти трещины в мироздании по всем эпохам, а из-за попытки переписать «фиксированную точку» может схлопнуться и прошлое, и будущее. В Homestuck после подобного инцидента мир пришлось пересоздавать заново, а в все эпохи смешались воедино, из-за чего события книг теперь невозможно соединить в непротиворечивую хронологию… Ну а в манге Tsubasa: Reservoir Chronicle стёртому из реальности сыну собственного клона пришлось заменить себя новым человеком, чтобы в уже случившихся событиях было хоть какое-то действующее лицо.

Некоторые герои мультиверсума Tsubasa существуют минимум в трёх воплощениях и происходят из других произведений той же студии

Любимое развлечение фанатов - рисовать для самых запутанных произведений хронологии

Звучит безумно? Но за такое безумие мы и любим путешествия во времени - они раздвигают границы логики. Когда-то, должно быть, и обычный скачок в прошлое мог свести непривычного читателя с ума. Сейчас же хронофантастика по-настоящему сияет на длинных дистанциях, когда авторам есть где развернуться, а временные петли и парадоксы наслаиваются друг на друга, порождая самые невообразимые комбинации.

Увы, часто бывает, что конструкция складывается под собственным весом: либо скачков во времени становится слишком много, чтобы был смысл за ними следить, либо авторы на ходу меняют правила вселенной. Сколько раз уже Скайнет переписывал прошлое? И кто сейчас сможет сказать, по каким правилам работает время в «Докторе Кто»?

Зато, если хронофантастика при всех своих парадоксах получается стройной и внутренне непротиворечивой, она запоминается надолго. Именно этим подкупают BioShock Infinite, Tsubasa: Reservoir Chronicle или Homestuck. Чем сложнее и запутаннее сюжет, тем более сильное впечатление остаётся у тех, кто добрался до конца и сумел окинуть взглядом сразу всё полотно.

* * *

Путешествия во времени, параллельные миры и переписывание реальности неразрывно связаны, поэтому сейчас без них не обходится почти ни одно фантастическое произведение - будь то фэнтези наподобие «Игры престолов» или научно-фантастическое исследование новейших теорий физики, как в «Интерстелларе». Мало какой сюжет даёт такой же простор для воображения - ведь в истории, где любое событие можно отменить или повторить несколько раз, возможно всё. При этом элементы, из которых складываются все эти истории, довольно просты.

Похоже, за последние сто лет авторы сделали со временем всё, что только возможно: пускали вперёд, назад, по кругу, в один поток и в несколько… Поэтому лучшие из таких историй, как и во всех жанрах, держатся на персонажах: на пришедшей ещё из древнегреческих трагедий теме борьбы с судьбой, на попытках исправить собственные ошибки и на тяжёлом выборе между разными ветками событий. Но как бы ни скакала хронология, история всё равно будет развиваться только в одном направлении - в том, которое интереснее всего зрителям и читателям.

Только представь, сколько полезных вещей можно было бы сделать, умей мы путешествовать во времени! Убить Гитлера, поменять доллары, убедить себя не пить вчера вечером, убедить Гитлера пить вчера вечером! Но наши герои были заняты совершенно другими вещами.

Отец Пеллигрино Эрнетти

Отец Пеллегрино Эрнетти, монах-бенедиктинец, почти всю жизнь прожил в монастыре на острове Сан-Джорджо. Он был практикующим экзорцистом и председателем кафедры преполифонии в местной консерватории. Но, по всей видимости, когда он не был занят изгнанием бесов и старинной музыкой, у него еще оставалось свободное время, потому что отец Эрнетти изобрел хроновизор - устройство, позволяющее переноситься в прошлое, чтобы увидеть исторические события своими глазами.

По признанию священника, он хотел побывать на опере «Триест», произведшей фурор в Риме в 169 году до н.э. Есть свидетельства людей, которые присутствовали при запуске хроновизора. Друг Пеллегрино Эрнетти - священник Франсуа Брюн даже написал книгу «Хронопроекционный аппарат - новая тайна Ватикана», в которой рассказывается о том, как он слушал речи Наполеона и видел распятие Христа. На сегодняшний день информации о хроновизоре нет, а все, что предлагают на «Авито» - жалкая подделка.

Билли Мейер

Первый контакт швейцарца Билли Мейера с инопланетянами, по его свидетельству, произошел, когда ему было пять лет. На связь с мальчиком вышел пришелец из созвездия Плеяды по имени Сфат, заменивший Билли отца. (Да и кто из нас время от времени не подозревал, что его папаша тоже из другой Галактики!)

Затем, когда Сфат умер, с Билли контактировала плеядианка Аскет, с которой он поддерживал связь на протяжении 11 лет. В 1975 году, когда Билли достиг половой зрелости, к нему явилась внучка Сфата - Семьясе. Не спрашивай, чему она научила Билли, мы и сами не знаем, об этом он не распространялся, зато представил общественности множество фотографий своих инопланетных друзей и их космических кораблей.

Пришельцы приходили к нему как из прошлого, так и из будущего, а также из параллельных измерений, предупреждая о грядущих мировых катаклизмах. Заботясь о благополучии землян, Билли сообщал о грядущей Третьей мировой войне, которая должна была начаться в ноябре 2006 года, затем в 2008-м и, наконец, в 2010-м. Но, видимо, друзья Билли не сильно поднаторели в земной истории, потому что мы пишем тебе эти строки из 2016 года.

Шарлотта Энн Моберли и Элеонор Журден

Две школьные учительницы образцовой репутации в 1901 году отправились на экскурсию в Версаль и, заблудившись в садах, попали в 1792 год, прямиком в разгар Французской революции. Они утверждали, что видели Марию-Антуанетту в ее последние дни перед арестом. Королева сидела перед Малым Трианоном и рисовала, когда вооруженная толпа черни двинулась на Париж.

Вернувшись в настоящее, Шарлотта и Элеонор написали книгу о происшедшем с ними и назвали ее «Приключение». Книга, разумеется, была немедленно раскритикована, а учительниц обвинили в мошенничестве. В качестве доказательства обмана критики использовали современную карту Версаля. Шарлотта и Элеонор описывали, что перед тем, как попасть в прошлое, пересекали мост, который не существовал в их время.

Однако позднее была обнаружена карта Версаля XVIII века, на которой мост, описанный в «Приключении», действительно был. Впрочем, как выяснилось позже, ни Шарлотта, ни Элеонор не были специалистами по истории Франции и, прежде чем написать книгу, с учительской дотошностью изучили вопрос.

Джон Тайтор

Герой интернет-форумов начала 2000-х, заявлявший, что прибыл из 2036 года. Конечным пунктом назначения Джона был 1975 год, а целью - компьютер IBM 5100, необходимый в будущем, чтобы уничтожить компьютерный вирус, направленный на уничтожение мира. Даже странно, что ни разу не прозвучало имя Джона Коннора.

На вопросы, как же он оказался в 2000 году, Джон отвечал, что заскочил повидаться с семьей, так как грядет Третья мировая война, в результате которой Америка подвергнется ядерной бомбрадировке со стороны России. И наверняка бомбардировка была что надо, раз американцы в 2036 году испытывали нужду в компьютерах 70-х годов.

Боб Уайт

В 2003 году множество людей получили и-мейл, в котором им предлагалось помочь в создании габаритного модуля деформации с генератором и индукционным двигателем (или как-то так). Откликнувшимся на письмо автор охотно и подробно рассказывал свою теорию о перемещениях во времени и способах создания устройства для их осуществления. Автор письма назначил своим последователям встречу в небольшом городке в Массачусетсе 9 июля 2003 года, на которую благополучно не явился. Надеемся, он смог вернуться на свою планету. Или в психиатрическую лечебницу.

Виктор Годдард

Маршал ВВС Великобритании сэр Виктор Годдард просто-таки притягивал к себе паранормальные явления. В 1935 году, совершая полет на своем биплане с открытой кабиной, он попал в турбулентность, во время которой наблюдал странную картину, когда пролетал над заброшенным аэродромом: ландшафт под ним будто бы изменился, на аэродроме, где никого не должно было быть, cтояли самолеты, а между ними сновали механики в одежде синего цвета. Это удивило Годдарда, так как в то время все механики носили коричневую форму. Ему, разумеется, не поверил никто из сослуживцев, и история забылась до тех пор, пока спустя четыре года ВВС и вправду не изменили цвет формы с коричневого на тот самый оттенок синего, который видел Годдард.

«Машина времени есть у каждого из нас: то, что переносит в прошлое - воспоминания; то, что уносит в будущее - мечты »

Герберт Уэллс. «Машина времени»

О чем мечтает человек, если его голова не занята войной и меркантильными амбициями? Он мечтает о своем будущем, о звездах, о благополучии для окружающих. Наиболее красочно в наших краях этот факт отражался во времена существования Советского Союза, когда госпропаганда в рамках холодной войны и космической гонки убедила людей, что наука – двигатель прогресса. И в этом не было ничего плохого.

Увидев успехи человечества в освоении космического пространства, а также достижения в других областях науки, люди начали мечтать о том, что раньше казалось только фантастикой. Например, о вечной жизни и молодости, вечном двигателе, путешествии к звездам и другим галактикам, пониманию языка зверей, левитации и даже о машине времени. Впрочем, в дело опять вмешалась наука, которая раз за разом подрезает крылья мечтателям своими формулами, которые доказывают, что некоторые мечты несбыточны:

Создание вечного двигателя первого рода невозможно в рамках закона сохранения энергии. Первое начало термодинамики запрещает нам это делать, поэтому нам лишь остается ждать очередной прорывной теории в области физики и математики.

Понимание языка птиц и зверей по вполне понятным причинам до сих пор является фантастикой. Ученые находятся лишь на ранней стадии расшифровки звуков, издаваемых животными. Наибольших успехов удалось добиться в расшифровке языка дельфинов , но и это пока что больше похоже на призрачное будущее.

Жить вечно у нас пока не получится, ведь наши клетки запрограммированы умереть. Адекватных теорий о перепрограммировании пока нет и не предвидится, поэтому жизнь человека можно лишь .

Разбивать мечты человечества о скалы науки можно бесконечно, однако есть вещи, которые наукой не запрещены. Например, путешествие во времени. Одна из самых безумных, на первый взгляд, идей, оказывается реальной, потому что не идет вразрез с современными законами физики.

Первые мысли человечества о путешествии во времени

Установить, когда же человек впервые подумал о том, чтобы вернуться в прошлое или отправиться в будущее – невозможно. Скорее всего, эта мысль посещала многих на протяжении всего времени существования нашего рода. Другое дело отказ от обычных мечтаний и попытка описать идею путешествий во времени в рамках относительности временных отрезков. И первыми на это обратили внимание не ученые, а писатели-фантасты. Творческие люди не скованы научными рамками, поэтому могут дать волю своей фантазии. К тому же оказалось, что большинство пророчеств писателей относительно нашего будущего сбылись.

В литературе путешествия во времени описывались в зависимости от эпохи, в которую жили их творцы. Например, в романах 18 века, когда религия еще сохраняла свой вес в обществе и превалировала над остальными фактами, все необычное писатели связывали с божественным вмешательством.

Первой фантастической книгой о перемещении во времени принято считать роман Сэмюэля Мэддена «Воспоминания о ХХ веке. Письма о государстве, управляемом Георгом VI… Получены в виде откровения в 1728 г. В шести томах». В книге, которая была написана в 1733 году, главный герой получал письма с описанием событий из конца 20 века, которые ему приносил настоящий ангел.

Появление «Машины времени»

Первое упоминание некого рукотворного механизма, который позволял перемещаться во времени, появилось лишь в конце 19 века. В 1881 году в одном из научных журналов Нью-Йорка появился рассказ американского журналиста Эдварда Митчелла «Часы, которые шли назад». В нем говорится о молодом человеке, который смог отправиться в прошлое с помощью обычных комнатных часов.

Эдвард Митчелл считается одним из родоначальников современной научной фантастики. Он описал в своих книгах множество изобретений и идей задолго до того, как они появились на страницах других фантастов. Он рассказал о путешествиях со сверхсветовой скоростью, человеке-невидимке и многом другом раньше других.

В 1895 году произошло событие, которое перевернуло мир фантастической прозы. В английском журнале «The New Review» редактор решает опубликовать рассказ «История Путешественника во Времени» — первое крупное фантастическое произведение Герберта Уэллса. Название «Машина времени» появилось не сразу, и было принято лишь через год. Писатель развил идею рассказа «Аргонавты времени», написанного в 1888 году.

«Идея возможности путешествия во времени возникла у него в 1887 году после того, как некий студент по фамилии Хэмилтон-Гордон в подвальном помещении Горной школы в Южном Кенсингтоне, где проходили заседания «Дискуссионного общества», сделал доклад о возможностях неэвклидовой геометрии по мотивам книги Ч. Хинтона «Что такое четвёртое измерение»

Отличительной особенностью романа является то, что некоторые моменты путешествия главного героя во времени были описаны с помощью предположений, которые впоследствии появились в общей теории относительности Альберта Эйнштейна. На момент написания рассказа ее даже не существовало.

Феномен Эйнштейна

С древних времен человек воспринимал окружающее его пространство, как значение трех измерений: длину, ширину и высоту. Разговоры о времени были уделом философов, лишь в 17 веке ввели понятие времени в науку, как физической величины, однако ученые, в том числе и Ньютон, воспринимали время как нечто неизменяемое, прямолинейное.

Ньютоновская физика предполагала, что часы, которые будут расположены в любой части Вселенной, всегда покажут одинаковое время. Ученых устраивало текущее положение дел, ведь проводить расчеты по таким данным гораздо проще.

Все изменилось в 1915 году, когда за трибуну встал Альберт Эйнштейн. Доклад о Специальной теории относительности (СТО) и Общей теории относительности (ОТО) поставил ньютоновское восприятие времени на колени. В его научных работах время существовало неразрывно с материей и пространством и не было прямолинейным. Оно могло менять свой ход, ускоряться или замедляться, в зависимости от условий.

У сторонников ньютоновской вселенной опустились руки. Теория Эйнштейна была крайне логичной, все основные законы физики продолжали работать в ней безупречно, поэтому научному сообществу осталось принять ее, как данное.

«Воображение важнее, чем знания. Знания ограничены, тогда как воображение охватывает целый мир, стимулируя прогресс, порождая эволюцию ».

Альберт Эйнштейн

В своих уравнениях ученый представил искривления пространства-времени, вызванные гравитационной составляющей материи. В них учитывались не только геометрические особенности объектов, но также плотность, давление и другие факторы, которыми они обладают. Особенность уравнений Эйнштейна в том, что их можно читать как справа-налево, так и слева-направо. В зависимости от этого будет изменяться восприятие окружающего нас мира и взаимодействие пространства-времени.

Первые представления путешествия во времени

После того, как научное сообщество отошло от шока, оно начало активно использовать наработки Эйнштейна в своих исследованиях. Первыми заинтересовались астрономы и астрофизики, ведь теория относительности работала для окружающей нас Вселенной, что несомненно поможет ответить на ряд вопросов, которые ранее считались риторическими. В то же время выяснилось, что научные труды немецкого физика допускают возможность существования машины времени, даже нескольких ее видов.

Уже в 1916 году появились первые научные труды о путешествиях во времени с теоретическим обоснованием. Первым об этом заявил ученый-физик из Австрии, которого звали Людвиг Фламм, которому на тот момент было всего 30 лет. Он вдохновился идеями Эйнштейна и пытался решить его уравнения. Внезапно Фламма осенило, что при искривлении пространства и материи в окружающей нас Вселенной могут возникать своеобразные тоннели, сквозь которые можно проходить не только в рамках пространства, но также и времени.

Эйнштейн тепло принял теорию молодого ученого, и согласился, что она отвечает всем условиям теории относительности. Спустя почти 15 лет ему удалось развить рассуждения Фламма, и он вместе со своим коллегой Натаном Розеном смогли соединить между собой две черных дыры Шварцшильда с помощью пространственно-временного тоннеля, который расширялся на входе, постепенно сужаясь к своей середине. В теории, сквозь такой тоннель можно путешествовать в пространственно-временном континууме. Физики назвали такой тоннель мостом Эйнштейна-Розена.

Людям не из научного мира мосты Эйнштейна-Розена известны под более простым названием «червоточины», которое придумал в середине 20 века ученый из Принстона Джон Уилер. Также распространено название «кротовые норы». Такое выражение быстро распространилось среди сторонников современной теоретической физики и очень точно отражало дыры в пространстве. Проход сквозь «червоточину» позволил бы человеку покрывать огромные расстояния за гораздо более короткие промежутки времени, нежели путешествие по прямой. С их помощью можно было бы даже отправиться на край Вселенной.

Идея «кротовых нор» настолько вдохновила писателей-фантастов, что большинство научной фантастики начиная с середины 20 века рассказывает нам о далеком будущем человечества, где люди освоили весь космос и с легкостью путешествуют от звезды к звезде, встречая новые инопланетные расы и вступая с некоторыми из них в кровопролитные войны.

Впрочем, физики не разделяют оптимизма писателей. По их заявлению, путешествие сквозь червоточину может стать последним, что увидит человек. Как только он попадет за горизонт событий, его жизнь остановится навсегда.

В своей книге «Физика невозможного» знаменитый ученый и популяризатор науки Митио Каку цитирует своего коллегу Ричарда Готта:

«Не думаю, что вопрос в том, может ли человек, находясь в черной дыре, попасть в прошлое, вопрос в том, сможет ли он выбраться оттуда, чтобы похвастаться ».

Но не стоит отчаиваться. На самом деле физики все же оставили лазейку для романтиков, мечтающих путешествовать сквозь пространство и время. Чтобы выжить в червоточине, нужно лишь лететь быстрее скорости света. Дело в том, что по законам современной физики это просто невозможно. Таким образом, мост Эйнштейна-Розена в рамках сегодняшней науки является непроходимым.

Развитие теории путешествий во времени

Если путешествие сквозь «кротовую нору» позволит в теории попасть в будущее, то с нашим прошлым в этом плане все намного сложнее. В середине 20 века австрийский математик Курт Гёдель в очередной раз пытался решить уравнения, созданные Эйнштейном. В результате его вычислений на бумаге вырисовалась вращающаяся вселенная, которая представляла собой цилиндр, время в котором бежало по его краям и было закольцовано. Столь сложную модель неподготовленному человеку трудно даже вообразить, тем не менее в рамках этой теории можно было попасть в прошлое, если обогнуть вселенную по внешнему контуру со скоростью света и выше. По расчетам Гёделя, в таком случае вы прибудете в точку старта задолго до самого старта.

К сожалению, модель Курта Гёделя также не вписывается в рамки современной физики из-за невозможности путешествия быстрее скорости света.

Обратимая червоточина Кипа Торна

Научное сообщество не прекращало попыток решить уравнения теории относительности, и в 1988 году произошел скандал, который поставил весь мир на уши. В одном из научных американских журналов вышла статья от знаменитого физика и эксперта в области теории гравитации Кипа Торна. В своей статье ученый заявил, что он вместе со своими коллегами сумел рассчитать так называемую «обратимую червоточину», которая не схлопнется за космическим кораблем, как только тот войдет в нее. Для сравнения ученый привел пример, что такая червоточина позволит гулять по ней в любом направлении.

Заявление Кипа Торна было очень достоверно и подкреплялось математическими расчетами. Проблема была лишь в том, что она шла вразрез с аксиомой, которая лежит в фундаменте современной физики – события прошлого нельзя изменять.

Так называемый временной парадокс физики в шутку назвали «убийством дедушки». Такое кровожадное название довольно точно описывает схему: вы отправляетесь в прошлое, нечаянно убиваете маленького мальчика (потому что он вас бесит). Мальчик оказывается вашим дедушкой. Соответственно, на свет не появляется ваш отец и вы, значит вы не пройдете сквозь червоточину и не убьете своего дедушку. Круг замкнулся.

Также этот парадокс носит название «Эффект Бабочки», который появился в книге Рэя Брэдбери «И грянул гром» задолго до разработки теории учеными, в 1952 году. В сюжете описывалась история героя, который отправился в путешествие в прошлое, в доисторический период, когда на земле царили гигантские ящеры. Одним из условий путешествия было то, что герои не имеют права сходить со специальной тропы, чтобы не вызвать временной парадокс. Тем не мене, главный герой нарушает это условие, и сходит с тропы, где наступает на бабочку. Когда же он возвращается в свое время, то его глазам предстает ужасающая картина, где мир, который он знал до этого, уже не существует.

Развитие теории Торна

Из-за временных парадоксов отказываться от идеи Кипа Торна и его коллег было бы глупо, проще решить проблему с самими парадоксами. Поэтому поддержку американский ученый получил оттуда, откуда ее меньше всего ожидал: от российского ученого-астрофизика Игоря Новикова, который придумал, как обойти проблему с «дедушкой».

По его теории, которую назвали «принципом самосогласованности», если человек попадает в прошлое, то его возможность влиять на уже произошедшие с ним события стремится к нулю. Т.е. сама физика времени и пространства не даст вам убить дедушку или вызвать «эффект бабочки».

На данный момент, мировое научное сообщество разделилось на два лагеря. Один из них поддерживает мнение Кипа Торна и Игоря Новикова относительно путешествий сквозь кротовые норы и их безопасности, другие упорно отрицают. К сожалению, современная наука не позволяет ни доказать, ни опровергнуть эти заявления. Обнаружить червоточины в космосе мы также пока не в силах из-за примитивности наших приборов и механизмов.

Кип Торн стал главным научным консультантом при создании знаменитого научно-фантастического фильма «Интерстеллар», в котором рассказывается о путешествии человека сквозь «кротовую нору .

Создание собственного пространственно-временного тоннеля

Чем шире фантазия современного ученого, тем больших высот он может достичь в своей работе. Пока скептики отрицают любую возможность существование моста Эйнштейна-Розена, сторонники этой теории предлагают выход из ситуации. Если мы не способны обнаружить червоточину в непосредственной близости от нас, значит ее можно создать самим! Тем более, что наработки для этого уже есть. Пока эта теория находится в области фантастики, однако, как мы уже успели убедиться, большинство предсказаний фантастов сбылись.

Кип Торн вместе со своими сторонниками продолжает работать над теорией кротовых нор. Ученый смог рассчитать, что спровоцировать рождение червоточины можно с помощью так называемой «темной материи» — таинственного строительного материала во Вселенной, который не удается обнаружить напрямую, но по предположениям физиков, из нее состоит 27% нашей вселенной . К слову, на долю барионной материи (той, из который мы с вами состоим и можем увидеть) приходится всего 4,9% от общей массы вселенной. Темная материя обладает удивительными свойствами. Она не испускает электромагнитного излучения, не взаимодействует с другими формами материи кроме как на гравитационном уровне, но ее потенциал поистине огромен.

По словам Торна, с помощью темной материи можно создать обратимую кротовую нору достаточных размеров, чтобы через нее мог пройти космический корабль. Проблема лишь в том, что для этого нужно накопить столько темной материи, что ее масса будет соразмерна с массой Юпитера. Человечество же пока не в состоянии заполучить даже грамм этого вещества, если к нему вообще применимо понятие «грамма». К тому же, необходимость путешествия со скоростью света никто не отменял, а это значит, что несмотря на все достижения человечества в области науки, мы до сих пор находимся на пещерном уровне развития, и до настоящих прорывных открытий нам очень далеко.

Послесловие

Идеи по изобретению настоящей машины времени, которая позволила бы нам открыть загадки прошлого и увидеть свое будущее, пока несбыточны. Впрочем, это не отменяет факта, что теория относительности, разработанная Эйнштейном, продолжает работать относительно каждого из нас. Например, найти настоящего путешественника во времени не составит труда даже сейчас. Чем быстрее движется человек, тем медленнее для него идет время, а это значит, что он медленно, но верно перемещается в будущее. Пилоты авиалайнеров, истребителей и в особенности космонавты, работающие на орбите – настоящие путешественники во времени. Пусть и на сотые доли секунды, но они опередили нас, людей, живущих на Земле.


Если с вами произошел необычный случай, вы увидели странное существо или непонятное явление, вам приснился необычный сон, вы увидели в небе НЛО или стали жертвой похищения пришельцев, вы можете прислать нам свою историю и она будет опубликована на нашем сайте ===> .

Концепция машины времени вызывает в воображении образы неправдоподобного устройства, которое слишком часто используется в сюжетах научно-фантастических. Однако согласно общей теории относительности Альберта Эйнштейна, которая объясняет работу гравитации во Вселенной, путешествия во времени — это не только плод воображения. И если в фильмах путешествие во времени — это сюжетный поворот, то как насчет реальности?

Путешествие вперед во времени, согласно теории Эйнштейна, абсолютно возможно. По сути, физикам удалось отправить крошечные частицы под названием мюоны, очень похожие на электроны, вперед во времени, манипулируя гравитацией вокруг них. Это не означает, что технология для отправки людей вперед в будущее станет возможной в ближайшие 100 лет, но все же.

1. Червоточины

Астрофизик Эрик Дэвис из Международного института перспективных исследований EarthTech в Остине считает, что это возможно. Все, что вам нужно — это кротовая нора или червоточина, теоретический проход сквозь ткань пространства-времени, предсказанный в рамках теории относительности.

Червоточины пока не были доказаны, и если их когда-нибудь и найдут, они будут настолько малы, что в них не поместится даже человек, не говоря о космическом корабле. При всем этом Дэвис полагает, что червоточины вполне можно использовать для перемещения обратно в прошлое.

Как общая теория относительности, так и квантовая теория предлагают несколько возможностей для путешествия — например, «закрытую времяподобную кривую» или путь, который сокращает пространство-время, то есть машину времени.

Дэвис утверждает, что современное научное понимание законов физики «кишит машинами времени, то есть многочисленными решениями геометрии пространства-времени, которые позволяют путешествовать во времени или обладают свойствами машины времени».

Как вы понимаете, червоточина позволила бы судну, например, пройти из одной точки в другую быстрее скорости света — почти как в варп-пузыре. Все потому, что корабль прибудет в пункт назначения раньше, чем луч света, пройдя по короткому пути сквозь пространство-время. Транспорт, таким образом, не нарушит правило универсального ограничения скорости, которое накладывает свет, поскольку сам корабль не путешествует с такой скоростью.

Такая червоточина может теоретически вести не сквозь пространство, но и сквозь время.

«Машины времени неизбежны в нашем физическом пространстве-времени», — пишет Дэвис в работе. — «Проходные червоточины включают машины времени».

Тем не менее, добавляет Дэвис, превратить червоточину в машину времени будет нелегко. Понадобятся титанические усилия. Все потому, что как только червоточина будет создана, один или оба ее конца нужно будет ускорить во времени к пункту назначения, что следует из общей теории относительности.

2. Машина времени: цилиндр Типлера

Чтобы использовать машину времени на основе цилиндра Типлера, вам нужно покинуть Землю на космическом корабле и отправиться в космос к цилиндру, который там вращается. Когда вы достаточно приблизитесь к поверхности цилиндра (пространство вокруг него будет по большей части «варпнуто», деформировано), вам нужно будет несколько раз обогнуть его и вернуться на Землю. Вы прибудете в прошлое.

Насколько далеко в прошлое — зависит от того, сколько раз вы обогнете цилиндр по орбите. Даже если вам покажется, что ваше собственное время движется вперед как обычно, пока вы огибаете цилиндр, за пределами искаженного пространства вы неизбежно будете двигаться в прошлое. Это все равно, что вы поднимаетесь по винтовой лестнице и обнаруживаете, что с каждым полным кругом находитесь на одну ступеньку ниже.

3. Пончиковый вакуум

По мнению Амоса Ори из Израильского технологического института в Хайфе, пространство может быть достаточно скручено для создания локального гравитационного поля, которое напоминает пончик определенных размеров. Гравитационное поле образует круги вокруг этого пончика, поэтому пространство и время крепко закручены.

Важно отметить, что такое положение дел сводит на нет необходимость какой-либо гипотетической экзотической материи. Хотя как это будет выглядеть в реальном мире описать довольно трудно. Ори говорит, что математика показала, что через равные промежутки времени внутри пончика в вакууме будет образовываться машина времени.

Все, что вам нужно — это попасть туда. В теории можно будет отправиться в любой момент времени с тех пор, как была построена машина времени.

4. Экзотическая материя

В физике экзотическая материя — это материя, которая так или иначе отличается от нормальной и обладает некоторыми «экзотическими» свойствами. Поскольку путешествие во времени считается нефизическим, физики полагают, что так называемые тахионы (гипотетические частицы, для которых скорость света — это состояние покоя) либо не существуют, либо неспособны взаимодействовать с нормальной материей.

Но когда отрицательная энергия или масса — та самая экзотическая материя, или вещество — скручивает пространство-время, становятся возможными все невероятные явления: червоточины, которые могут выступать туннелями, соединяющими удаленные участки вселенной; варп-двигатель, который позволит путешествия быстрее скорости света; машины времени, которые позволят отправиться в прошлое.

5. Космические струны

Космические струны — это гипотетические 1-мерные (пространственно) топологические дефекты в ткани пространства-времени, оставшиеся еще со времен образования вселенной. С их помощью в теории могут быть образованы поля замкнутых времениподобных кривых, позволяющих путешествовать в прошлое. Некоторые ученые предлагают использовать «космические струны» для построения машины времени.

Если подвести две космические струны достаточно близко одна к другой или одну струну к черной дыре, в теории это может создать целый массив «замкнутых времениподобных кривых». Если делать тщательно рассчитанную «восьмерку» на космическом корабле вокруг двух бесконечно длинных космических струн, в теории можно оказаться где угодно и когда угодно.

6. Сквозь черную дыру

Черная дыра оказывает невероятное влияние на время, замедляя его так, как ничто другое в галактике. По сути, это природная машина времени. Если бы миссией облета вокруг черной дыры управляло наземное агентство, для них облет орбиты занял бы 16 минут. Но для смелых людей на борту корабля, который находится близко к массивному объекту, время шло бы очень медленно. Куда медленнее, чем на Земле. Время для команды замедлилось бы вдвое. За каждые 16 минут они переживали бы только 8.