КПД теплового двигателя. КПД теплового двигателя - формула определения

КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где - теплота, полученная от нагревателя, - теплота, отданная холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

Действительное же значение КПД из-за различного рода энергетических потерь равно:

Повышение КПД тепловых двигателей, приближение его к максимально возможному - важнейшая техническая задача.

Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

Другое направление прилагаемых усилий - это увеличение эффективности использования энергии, борьба за ее экономию.

Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?


КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где - теплота, полученная от нагревателя, - теплота, отданная холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

Действительное же значение КПД из-за различного рода энергетических потерь равно:

Повышение КПД тепловых двигателей, приближение его к максимально возможному - важнейшая техническая задача.

Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

Другое направление прилагаемых усилий - это увеличение эффективности использования энергии, борьба за ее экономию.

Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?

Класс: 10

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Задачи урока:

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

Фронтальный опрос:

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Q 2 – количество теплоты отданное холодильнику Q 2

A / = Q 1 – |Q 2 | – работа совершаемая двигателем за цикл? < 1.

Цикл C. Карно (Слайд 9)

T 1 – температура нагревания.

Т 2 – температура холодильника.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. На водном транспорте также использовались вначале паровые двигатели, сейчас используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80 % всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях.Газовые турбины широко используются в ракетах, в железнодорожном и автомобильном транспорте.

На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели).

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах – турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах. (Слайд 10)

(Показ видеофрагментов работы турбореактивного двигателя.)

Рассмотрим более подробно работу двигателя внутреннего сгорания. Просмотр видеофрагмента. (Слайд 11)

Работа четырехтактного ДВС.
1 такт: впуск.
2 такт: сжатие.
3 такт: рабочий ход.
4 такт: выпуск.
Устройство: цилиндр, поршень, коленчатый вал, 2 клапана(впуск и выпуск), свеча.
Мертвые точки – крайнее положение поршня.
Сравним эксплуатационные характеристики тепловых двигателей.

  • Паровой двигатель – 8%
  • Паровая турбина – 40%
  • Газовая турбина – 25-30%
  • Двигатель внутреннего сгорания – 18-24%
  • Дизельный двигатель – 40– 44%
  • Реактивный двигатель – 25% (Слайд 112)

Тепловые двигатели и охрана окружающей среды (Слайд 13)

Неуклонный рост энергетических мощностей – все большее распространение укрощенного огня – приводит к тому, что количество выделяемой теплоты становится сопоставимым с другими компонентами теплового баланса в атмосфере. Это не может не приводить к повышению средней температуры на Земле. Повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц – сажи, пепла, измельченного топлива, что приводит к увеличению “парникового эффекта”, обусловленного повышением концентрации углекислого газа в течение длительного промежутка времени. Это приводит к повышению температуры атмосферы.

Выбрасываемые в атмосферу токсические продукты горения, продукты неполного сгорания органического топлива – оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.

Все это ставит ряд серьезных проблем перед обществом. (Слайд 14)

Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях, а также увеличения эффективности использования энергии, экономии ее на производстве и в быту.

Альтернативные двигатели:

  • 1. Электрические
  • 2. Двигатели, работающие на энергии солнца и ветра (Слайд 15)

Пути решения экологических проблем:

    Использование альтернативного топлива.

    Использование альтернативных двигателей.

    Оздоровление окружающей среды.

    Воспитание экологической культуры. (Слайд 16)

5. Закрепление материала

Всем вам предстоит всего лишь через год сдавать единый государственный экзамен. Предлагаю вам решить несколько задач из части А демоверсии по физике за 2009 год. Задание вы найдете на рабочих столах ваших компьютеров.

6. Подведение итогов урока

С момента, когда была построена первая паровая машина, до настоящего времени прошло более 240 лет. За это время тепловые машины сильно изменили содержание жизнь человека. Именно применение этих машин позволило человечеству шагнуть в космос, раскрыть тайны морских глубин.

Выставляет оценки за работу на уроке.

7. Домашнее задание:

§ 82 (Мякишев Г.Я.), упр. 15 (11, 12) (Слайд 17)

8. Рефлексия

Прежде чем покинуть класс просьба заполнить таблицу.

На уроке я работал

активно / пассивно

Своей работой на уроке я

доволен / не доволен

Урок для меня показался

коротким / длинным

За урок я

не устал / устал


Тепловым называется двигатель, выполняющий работу за счет источника тепловой энергии.

Тепловая энергия (Q нагревателя ) от источника передается двигателю, при этом часть полученной энергии двигатель тратит на выполнение работы W , неизрасходованная энергия (Q холодильника ) отправляется в холодильник, роль которого может выполнять, например окружающий воздух. Тепловой двигатель может работать только в том случае, если температура холодильника меньше температуры нагревателя.

Коэффициент полезного действия (КПД) теплового двигателя можно рассчитать по формуле: КПД = W/Q нг .

КПД=1 (100%) в том случае, если вся тепловая энергия превращается в работу. КПД=0 (0%) в том случае, если никакая тепловая энергия не превращается в работу.

КПД реального теплового двигателя лежит в промежутке от 0 до 1, чем выше КПД, тем эффективнее двигатель.

Q х /Q нг = T х /T нг КПД = 1-(Q х /Q нг) КПД = 1-(T х /T нг)

Учитывая третье начало термодинамики , которое гласит, что температуру абсолютного нуля (Т=0К) достичь невозможно, можно сказать, что невозможно разработать тепловой двигатель с КПД=1, поскольку всегда T х >0.

КПД теплового двигателя будет тем больше, чем выше температура нагревателя, и ниже температура холодильника.

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель , рабочее тело и холодильник .

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Q нагр, полученное от нагревателя, количество теплоты |Q хол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

A = Q нагр – |Q хол|.

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q , то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики . Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию .

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя T нагр и холодильника T хол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).