Современное состояние и развитие технологий водоподготовки. Контрольная работа: Процесс водоподготовки

От качества воды, которую ежедневно пьёт человек, зависит не только его пищеварение. Эта жидкость влияет на самочувствие, здоровье, иммунитет, внешний вид, качество сна и ещё массу факторов. Уже давно человечество не стремится к получению для своих нужд дистиллированной воды, которая когда-то считалась эталоном. Теперь требования стали более современными и зависят от целевого направления: для ежедневного употребления в пищу, для изготовления лекарств, для полива растений и т.д.

Очистка для любых целей начинается с ликвидации механических частиц, которые видны невооружённым взглядом. Такая мера не только улучшает конечный результат, но и уберегает тонкие фильтры. Важно понимать, что в любом методе существуют как сильные стороны, так и недостатки. Все современные инновации и прогрессивные технологии направлены на то, чтобы достичь оптимального качества очищающейся жидкости, обеспечив минимальное количество недостатков, присущих процессу.

Для пищевых целей

К качеству питьевой воды предъявляют самые высокие требования, поскольку оптимальные значения конечного продукта влияют и на вкусовые характеристики различных блюд и напитков, и на организм человека.

Нанофильтрация

Одна из самых современных технологий в первую очередь нашла применение в таких странах, как Франция, Голландия и США.

Нанофильтрация обладает следующими преимуществами:

  • идеально удаляет цветность;
  • избавляет от галогенных примесей органики;
  • выводит ионы хлора безреагентным методом.

Главным плюсом считается высокоэффективная борьба с хлорсодержащими остатками, которые нередко присутствуют в воде, подаваемой по общему трубопроводу после обеззараживающей очистки.

Среди недостатков новой методики можно выделить необходимость в обеспечении многоступенчатой предварительной обработки, которая выведет из раствора все механические частицы и взвешенные вещества.

Для получения продукции экстра-качества перед нанофильтрами могут оборудовать установки обратного осмоса и коагуляционные системы.

Выполнение всех этих требований автоматически делает нанофильтрацию самым дорогим методом, что не позволяет использовать её в массовых масштабах. Такая технология используется для особых категорий: недоношенных детей, в постоперационных реабилитационных периодах, для приготовления искусственного питания грудных детей и т.д.

Фотокатализация

Ещё одна технология подготовки питьевой воды, которая изобретена недавно, но получила одобрение всех мировых специалистов в данной индустрии.

Главные её преимущества:

  • отсутствие предварительной обработки химическими или другими методами;
  • эффективное удаление взвешенных веществ;
  • выведение органических примесей.

Первые подобные очистные приборы выпущены в Великобритании и Нидерландах. В тубе находится одна или несколько капиллярных мембран, которые пропускают очищаемые потоки. Чем больше таких мембран, тем выше производительность установки. Трубчатая система способствует тому, что в установке не возникает застойных зон, в которых могут образоваться донные залежи.

Низкая производительность (до 200 кубов в сутки) не даёт наладить серийное производство для высокомощных потребителей. К тому же, высокое потребление электроэнергии, за счёт которой обеспечивается достаточная скорость потока, обращает на себя внимание. Фотокатализаторы целесообразно применять в производствах, получающих электроэнергию от солнечных батарей или от ветра.

Рулонные аппараты

Очередная новинка водоочистки – рулонные аппараты. Тестирования в лабораториях для таких установок уже завершены, теперь они поступают в производство.

Их преимущества:

  • эффективность в борьбе с высокой цветностью (до 150) и взвешенными веществами;
  • возможность регулировки скорости потока и производительности;
  • простота схемы;
  • лёгкость монтажа.

Рулонные аппараты имеют небольшое гидравлическое сопротивление, а на отдельном участке оборудованы открытым каналом, который позволяет легко удалять образовавшийся осадок. Очистка проводится также при помощи повышения скорости потока, который выносит из рулонного аппарата отложения.

Минусом является то, что систему нужно оборудовать специальной механической доочисткой, чтобы содержащиеся твёрдые элементы не засоряли узкие места в трубе. Зато энергопотребление рулонных аппаратов довольно скромное – 0,5 КВт на 1 метр кубический очищенной воды.

Опреснители

Пресные водоёмы не всегда доступны для водоснабжения, что становится всё большей проблемой. Недостаток пресной воды заставляет учёных постоянно разрабатывать и совершенствовать новые методы опреснения.

В Массачусетсе разработана новая принципиальная схема опреснения, которая основана на разделении ионов и чистых молекул без использования любых мембран.

При шоковом электродиализе, предложенном учёными, поток проходит через пористую керамику, по обе стороны которой оборудованы мощные электроды. Между ними подаётся сильный разряд, образующий ударную волну, которая режет поток на 2 части. В одной из них сосредоточена пресная, а во второй – солёная вода. Перегородка, которая установлена дальше по мере продвижения, изолирует эти части друг от друга.

Система такой инновационной очистки не засоряется, не производит осадка, поэтому не нуждается в периодическом очищении. Кроме того, сильные разряды убивают бактерии и все биологические загрязнители, из-за этого дополнительное обеззараживание и стерилизация не проводится.

Материалы для производства установки имеют умеренную стоимость, что даёт надежду на скорый массовый запуск такой системы по берегам солёных водоёмов.

Наномембрана

Метод отделения соли при помощи пористого материала нанотолщины предложен в Иллинойском университете.

Материал, из которого изготовлена мембрана – дисульфид молибден. Его раскатывают до толщины в несколько нанометров, что позволяет значительно снизить затраты на электроэнергию, необходимую для перемещения потока сквозь керамический слой. Тонкая мембрана позволяет обходиться минимальным давлением внутри системы, что снижает частоту засорения. Химические свойства молибдена дисульфида заставляют воду проницать фильтр с высокой скоростью за счёт притяжения к молибдену и отталкивания от серы.

Такая быстрая и высокоэффективная технология взята на вооружение многими крупными фермерскими хозяйствами, которые легко и недорого смогут решить проблему с поливом обширных территорий в береговой зоне.

Промышленные и сточные воды

Очистка бытовых- или промстоков является необходимым условием для многих предприятий и частных домов. Для бытовых нужд эта мера позволяет избавиться от запаха, который распространяется по участку от выгребной ямы, и препятствует образованию донных осадков, ухудшающих просачивание жидкости в грунт. Стоки промышленных производств тем более должны подвергаться предварительной обработке и очистке до входа в общую систему канализации, чтобы не нанести ущерб городским очистным сооружениям.

УФ-облучение

Такая технология очистки позволяет обеззараживать стоки от потенциально опасных объектов, таких как специфические производства биологических веществ или инфекционные больницы. Облучение для обеззараживания не влияет на здоровье человека, но надёжно устраняет бактерии, вирусы, грибки и прочие микроорганизмы.

Недостатком методики является то, что ультрафиолет влияет на большинство микробов, но не на все без исключения. При высокой мутности ультрафиолет может поглощаться загрязнённым слоем, поэтому эффективность водоочистки снизится. Это требует применения добавочных механических или химических фильтров для повышения надёжности. К тому же, система не имеет высокой мощности, поэтому на крупных предприятиях она не применяется.

Медно-цинковая технология

Прогрессивная разработка промышленной водоподготовки основана на применении гранул, содержащих медь и цинк. Эти два металла имеют разные заряды, поэтому загрязнители притягиваются либо к одному, либо к другому полюсу, оставаясь на поверхности гранул.

Кроме очищения, медно-цинковая технология убирает ионы жёсткости, делая воду умягчённой.

Недостатком является то, что в технологическом процессе образуется много обратной жидкости с высокой концентрацией загрязняющих металлов, которые должны утилизироваться через дренаж. Это повышает общий расход воды по счётчику, что сказывается на затратах производства.

Кроме того, медно-цинковая мембрана не оказывает во время очистки влияния на микроорганизмы, поэтому грибок, поселившийся на ней, сначала снижает эффективность, а потом сводит её к минимуму. Это вынуждает часто менять сработанные мембраны.

Септики

Эта технология используется для частных домов и небольших производств уже давно, но в последнее время она претерпела ряд изменений и стала более дешёвой и эффективной.

Современные септики содержат в своём составе бактерии, которые не реагируют на хлор в стоках, что раньше представляло большую проблему. Туалеты, находящиеся на участке, не требуют никаких затрат электричества для содержания и обогрева, исключается и необходимость даже редкой откачки содержимого выгребных ям.

Современный септик включает в себя 2 части: гравитационный отстойник и биологический очиститель. После отстойника, в котором оседают все взвеси, стоки попадают в объём, насыщенный микроорганизмами, перерабатывающими большинство органических и неорганических загрязнителей.

Эффективность современных септиков равняется 98%. Ил, который образовывается в отстойниках, используется в качестве органического удобрения, повышающего фракционные характеристики плодородных почв.

Анаэробные и аэробные микроорганизмы, которые содержатся в новых септиках для очистки бытовых стоков, являются устойчивыми к агрессивным средам и не погибают от резкого изменения рН среды.

Особая водоподготовка

Для изготовления сверхчистых растворов в медицине и лабораторных исследованиях необходима вода, свободная от различных примесей. И хотя известно, что идеальной чистоты на практике добиться невозможно, учёные без устали совершенствуют очистные системы для получения воды экстра-класса.

Продукт выхода – бидистиллят – приближается к химической чистоте. В новых бидистилляторах соединены несколько ступеней фильтров: ультрафильтрация, двухкаскадный осмос и обмен ионов в фильтрах смешанного действия.

После прохождения всех этапов очистки раствор носит статус высокоомного, что означает уникальное значение удельного сопротивления (17-18 МОм/см). Именно такие характеристики необходимы для получения сверхточных результатов лабораторных и медицинских экспериментов и исследований.

Деминерализация и деионизация

Современные технологии сделали возможным получение воды с минимальным содержанием минералов и ионов, приближающимся к нулю. Новые приборы, обеспечивающие такой результат, при помощи электрических зарядов на пластинах в колонках дистиллятора выводят максимально возможное количество загрязнителей, понижая их концентрацию до возможного на нынешнее время минимума.

Кроме того, в системе содержится мембрана обратного осмоса и комплексная смола для ионного обмена.

С применением деминерализованной и деионизованной составляющей реактивы дают минимальную погрешность во время анализов и практически не оказывают действия на живые ткани во время экспериментов.

Таким образом, можно сделать вывод, что технологии очистки во всех сферах активно развиваются, исследователи не останавливаются на достигнутом, внедряя в эту область новые достижения химической, механической, биологической и других видов обработки. Прогресс и возникновение современных методов позволяет улучшать результаты, а комплексный подход в использовании предложенных методик позволяет надеяться на удешевление получения чистой воды в будущем.

1

Настоящая статья посвящена обзору современных технологий очистки природных вод от антропогенных загрязнений, базирующихся на методах сорбции и биологического окисления. В статье рассмотрены основные пути попадания загрязнений в поверхностные водоисточники, представлены данные по составу вод в реках промышленно развитых регионов России. Существующие на действующих очистных сооружениях технологии не снижают концентрации антропогенных загрязнений в природных водах, что приводит к необходимости применения сорбционных методов очистки воды. Применение сорбционных методов очистки ограничено сорбционной емкостью сорбентов, по исчерпании которой необходима регенерация или замена сорбционного материала. Совмещение в биосорберах процессов сорбции и биологического окисления задержанных загрязнений позволяет поддерживать сорбционную емкость сорбентов на постоянном уровне. Дальнейшее развитие биосорбционной технологии связано с процессами мембранного разделения, позволяющими исключить вынос из биореактора частиц сорбента с закрепленной на них биомассой, что увеличивает эффект очистки и снижает ее стоимость.

биосорбционно-мембранная технология

очистка природных вод

питьевая вода

порошкообразный активированный уголь

хлорорганические соединения

1. Алексеева Л.П. Снижение концентрации хлорорганических соединений, образующихся в процессе подготовки питьевой воды // Водоснабжение и санитарная техника. – 2009. – № 9. – C. 27–34.

2. Андрианов А., Первов А. Методика определения параметров эксплуатации ультрафильтрационных систем очистки природных вод // Водоочистка. – 2005. – № 7. – C. 22–35.

3. Герасимов Г.Н. Мембранный биологический реактор BRM (опыт обработки промышленных и городских сточных вод) // Водоснабжение и санитарная техника. – 2004. – №4, часть 1.

4. Драгинский В.Л., Алексеева Л.П., Гетманцев С.В. Коагуляция в технологии очистки природных вод. – М., 2005. – 576 с.

5. Журба М.Г., Мякишев В.А. Очистка поверхностных вод, подвергшихся антропогенному воздействию // Водоснабжение и санитарная техника. – 1992. – № 8. – C. 2–6.

6. Журба М.Г., Соколов Л.И., Говорова Ж.М. Водоснабжение. Проектирование систем и сооружений: издание второе, переработанное и дополненное: учебное пособие. – М.: Изд-во АСВ, 2004. с. 496.

7. Линевич С.Н., Гетманцев С.В. Коагуляционный метод водообработки: теоретические основы и практическое использование. – М.: Наука, 2007. – С. 230.

8. Смолин С.К., Клименко Н.А., Невинная Л.В. Биорегенерация активных углей после адсорбции ПАВ в динамических условиях // Химия и технология воды. – 2001. – Т. 23, № 4.

9. Смирнова И.И. Исследование процесса очистки природных вод биосорбционно-мембранным методом: дис. ... канд. тех. наук: 05.23.04. – М., 2009. – 113 с.

10. Швецов В.Н. Очистка природных вод биосорбционно-мембранным методом / В.Н. Швецов и др. // Водоснабжение и сан. техника. – 2007. – № 11. – С. 24–28.

11. Швецов В.Н. Развитие биомембранных технологий очистки природных вод / В.Н. Швецов, К.М. Морозова, И.И. Смирнова // Водоснабжение и сан. техника. – 2009. – № 9. – С. 64–70.

12. Introduction to membranes – MBRs: Manufacturers` comparison: part 2. – supplier review // Filtration+Separation Elsevier Ltd., March 2008. – Р. 28–31.

13. Introduction to membranes – MBRs: Manufacturers` comparison: part 1 // Filtration+Separation Elsevier Ltd., April 2008. – Р. 30–32.

14. Kang I.-J., Lee Ch.-H., Kim K.-J. Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system // Water Research 37. – 2003. – Р. 1192–1197.

15. Lebeau T., Lelievre C. и др. Immersed membrane filtration for the production of drinking water-combination with PAC for NOM and SOCs removal // Desalimation. – 1998. – № 17 – Р. 219–231.

16. Clever M., Jordt F., Knauf R., Rabiger N., Rudebusch M., Hilker-Scheibel R. Process water production from river water by ultrafiltration and reverse osmosis // Desalination. – 2000. – № 131. – Р. 325–336.

17. Sawada Shigeki Устройство для получения сверхчистой воды, пат. JP 3387311 B2, МПК C02F 1/44, с приоритетом от 22.04.1996, опубл. 17.03.2005.

18. Soe G.T., Ohgaki S., Suzuki Y. Biological powdered activated carbon (BPAC)- microfiltration (MF) for wastewater reclamation and reuse. Murdoch Univ.Perth, Australia: The Proc. of International Specialist Conference on “Desalination and Water reuse”. – 1994. – Р. 70–79.

19. Soe G.T., Ohgaki S., Suzuki Y. Sorption characteristics of biological powdered activated carbon in BPAC-MF (Biological Powdered Activated Carbon – Microfiltration) system for refractory Organic Removal // Wat. Sci. Tech. – 1997. – № 35(7) – Р. 163–170.

20. Stephenson Т., Judd S., Jefferson B., Brindle K. Membrane Bioreactors for Wastewater Treatment. IWA Publishing. – London: U.K., 2000.

21. Thiruvenkatachari R., Shim W.G., Lee J.W., Moon H. Effect of powdered activated carbon type on the performance of an adsorption-microfiltratin submerged hollow fiber membrane hybrid system // Korean J. Chem. Eng. – 2004. – № 21 (5). – Р. 1044–1052.

22. Visvanathan C., Ben Aim R., Parameshwaran K. Membrane separation bioreactors for wastewater treatment // Crit. Rev. Environ. Sci Technol. – 2000. – № 30(1). – Р. 1–48.

В России для организации водоснабжения преимущественно используются поверхностные водоисточники, на долю которых приходится до 70 % от общего водозабора.

Основными источниками поступления загрязняющих веществ в поверхностные воды являются: бытовые, промышленные и сельскохозяйственные сточные воды. Их воздействие выражается в повышении концентраций в поверхностных водах биогенных элементов, органических соединений, поверхностно-активных веществ (СПАВ), нефтепродуктов, фенолов и др.

Загрязнение природных водоемов различного рода примесями происходит и при контакте их с окружающей атмосферой. Так, многочисленные газообразные выбросы промышленных производств, содержащие азот, оксид углерода, диоксид серы и мельчайшие частицы производственных отходов, вместе с вентиляционными выбросами попадают в атмосферный воздух, после контакта с которым происходит загрязнение поверхностных водоисточников, вода которых насыщается дополнительными дисперсными, коллоидными и молекулярно-растворенными примесями антропогенного происхождения.

В таблице представлены данные по некоторым водоисточникам, имеющим повышенные концентрации загрязняющих веществ природного и антропогенного характера. Приведенные данные позволяют дать предварительную оценку воздействия антропогенных факторов на природные водоисточники .

Показатели

Мутность, мг/л

Цветность, град

Нефтепродукты, мг/л

Фенолы, мг/л

СПАВ, мг/л

Волга (Балахна)

Ока (Тула)

Клязьма (Владимир)

Которосль (Ярославль)

Дон (Таганрог)

Томь (Кемерово)

СанПин 2.1.4.1074-01

Примечание. * норматив ПДК для водоема рыбохозяйственного назначения.

В России технологии подготовки питьевой воды основаны на классических методах коагуляции, отстаивании, фильтрации и сорбции. Обеззараживание воды осуществляется с применением гипохлорита натрия и газообразного хлора. Из-за постоянно возрастающей степени загрязнения водоисточников традиционно применяемые технологии обработки воды стали в большинстве случаев недостаточно эффективными .

Очистка воды коагулированием и флокулированием загрязнений представляет собой сложный физико-химический процесс, на эффективность протекания которого оказывают влияние многочисленные факторы (взвешенные вещества, ионный состав, щелочность, количество растворенных органических соединений, температура и др.). В паводковый период холодная вода, высокие цветность и мутность, низкая щелочность требуют высоких доз коагулянта или применения флокулянтов для интенсификации процессов осаждения загрязнений. Ухудшение процесса коагуляции также наблюдается при коагулировании маломутных цветных вод в холодное время года.

Вместе с тем классические технологии водоочистки практически не удаляют из воды химические загрязнения, находящиеся в растворенном виде, такие как фенолы, СПАВ, растворенные фракции нефти, ионы тяжелых металлов и др. Вследствие чего действующие очистные сооружения не могут обеспечить надлежащей барьерной функции.

Традиционные технологии очистки воды недостаточно эффективны в отношении ряда антропогенных загрязнений. Так, например, при исходной концентрации нефтепродуктов 1-5 мг/л эффект очистки составляет 20-40 %; анионактивные ПАВ удаляются на 25-50 % при содержании их в исходной воде 1,5-2,5 мг/л; фенолы на традиционных сооружениях при начальной концентрации 0,05-0,2 мг/л практически не удаляются, эффект очистки редко превышает 5 % .

Во многих случаях на традиционных очистных сооружениях в процессе первичного хлорирования воды образуются хлорорганические соединения. Обусловлено это возрастанием антропогенных нагрузок на источники водоснабжения, а также изменением технологических режимов водоочистки, в частности применением повышенных доз хлора и коагулянта и увеличением времени контакта хлора с водой. Наиболее часто в хлорированной воде обнаруживаются в концентрациях, превышающих ПДК, четыреххлористый углерод, хлороформ и бромоформы, обладающие канцерогенностью и мутагенностью. Обеспечить их нормативные концентрации после всего цикла водообработки на традиционных сооружениях не всегда удается .

Повышение качества очищенной воды на водопроводных очистных сооружениях в настоящий момент осуществляется путем применения дополнительных методов доочистки воды: озонирования, сорбции, ионного обмена, обратного осмоса и др. Как правило, все эти методы требуют значительных капиталовложений на оборудование, электроэнергию, транспортные перевозки и реагенты.

Одним из распространенных в практике повышения качества водоочистки адсорбентом является активированный уголь.

Пористые сорбенты на основе активированных углей широко применяются в промышленности и являются эффективными поглотителями паров, газов, растворенных веществ, а также катализаторами или носителями катализаторов. Благодаря своим свойствам они обеспечивают эффективную сорбцию макромолекул (в т.ч. углеводородов, красителей, белков, жиров и др.).

Активированные угли используются на конечной стадии водоподготовки для удаления различного рода хлорорганических соединений как содержащихся в исходной воде, так и образующихся в ней в больших количествах на предыдущих стадиях водоподготовки. Помимо этого, АУ поглощают из воды фенолы, пестициды, нефтепродукты, соединения тяжелых металлов и вещества, обуславливающие неприятные привкусы и запахи воды, тем самым повышая барьерную функцию водоочистных станций.

В технологии водоподготовки активированный уголь применяется в виде порошка (ПАУ) при углевании воды, дробленых или недробленых гранул (ГАУ) при фильтровании через угольные фильтры. Основными преимуществами ПАУ является хорошая кинетика сорбции, а значительная площадь внешней поверхности ПАУ обуславливает эффективную сорбцию макромолекул.

Выбор марки адсорбционного материала заключается в подборе параметров его пористой структуры в зависимости от размеров молекул адсорбируемых веществ. Так, для сорбции фенола, вещества с низкой молекулярной массой, имеющего размер молекул τ ≈ 0,63 нм, подходят такие активированные угли, как АГ-3 и МАУ-100, имеющие требуемую структуру пор. Нефтепродукты и СПАВ имеют более крупные размеры молекул τ ≥ 1,8 нм, при таких размерах молекулы может быть использован мезопористый сорбент СГН - 30.

Несмотря на то, что применение ПАУ повышает степень очистки природных вод, некоторые трудноокисляемые органические вещества не поддаются адсорбции на активном угле. В процессе адсорбционной очистки воды способность активных углей извлекать органические вещества снижается, а регенерация отработанного угля требует существенных эксплуатационных затрат, которые связаны с материало- и энергоемкостью технологии .

Одним из эффективных способов удаления антропогенных загрязнений из природных вод являются биологичекие методы очистки, в основу которых положены процессы аналогичные деструкции и превращению органических веществ в природных водотоках и водоемах.

Сущность биологической очистки заключается в минерализации органических загрязнений обрабатываемых вод, находящихся в виде тонко диспергированных нерастворенных и коллоидальных веществ, а также в растворенном состоянии при помощи аэробных биохимических процессов. В зависимости от условий, в которых происходит очистка воды, биологические методы разделяют на биологическую очистку в условиях близких к естественным и в искусственно созданных условиях.

Для биологической очистки воды в искусственных условиях в практике водоподготовки, в последнее время в основном применяют технологии, основанные на использовании естественного биоценоза и искусственных носителей прикрепленной микрофлоры с высокоразвитой удельной поверхностью. В качестве материалов-носителей могут применяться синтетические волокна, различные зернистые и гранулированные материалы, такие как песок, керамзит, стекло, пластмассы, цеолиты и активированные угли.

Использование иммобилизованных (прикрепленных) микроорганизмов позволяет применять биотехнологии для очистки природных вод не только от традиционных загрязнений, но и от широкого спектра токсичных трудноокисляемых веществ.

Данная технология реализуется главным образом в таких сооружениях, как биофильтры, угольные адсорберы с биологической активностью, реакторы с кипящим слоем и биосорберы.

Дальнейшим развитием сорбционных и биологических методов удаления загрязнений является технология биосорбции, которая начала развиваться с 70-х годов прошлого столетия. Процесс биосорбции включает биологическую деградацию органических загрязняющих веществ в дополнение к адсорбции их на активном угле. Это приводит к более длительному периоду работы угля (вплоть до восстановления сорбционной емкости) и, следовательно, к снижению стоимости очистки.

Увеличение сорбционной емкости угля объясняется его биологической регенерацией, т.е восстановлением адсорбционной способности за счет биоокисления органических соединений, адсорбированных на активном угле. Биологическое удаление адсорбата на поверхности угля позволяет повторно открыть адсорбционные центры, которые могут быть заняты другими органическими молекулами из раствора.

К середине 90-х гг. прошлого века в зарубежных изданиях появляется информация о совместном использовании биоактивного порошкообразного угля и микрофильтрации, которое показало высокую эффективность при удалении биологически стойких органических вещества из сточной воды .

К тому же периоду относятся работы сотрудников НИИ ВОДГЕО по оценке технологической эффективности биосорбционного метода удаления из воды р. Москва природных загрязнений и веществ антропогенного характера в моменты резкого увеличения концентрации загрязнений в паводковый период или при аварийных ситуациях.

Длительная эксплуатация биосорбционных установок с псевдоожиженным слоем гранулированного биологически активного угля параллельно с технологической схемой, включающей предварительное хлорирование, коагуляцию, отстаивание и фильтрование последовательно на песчаном фильтре и фильтре с активированным углем показала, что эффективность биосорберов сравнима с эффективностью работы всей схемы. В отношении загрязнений природного происхождения биосорбционные установки обеспечили получение воды того же качества, что и при использовании традиционной схемы водоподготовки с доочисткой на сорбционных фильтрах. При этом цветность снижалась с 20-25 до 11-15 град., мутность в среднем с 10 до 4 мг/л, окисляемость с 6-8 до 3,5-4,0, азот аммонийный с 0,3 до 0,03, коли-индекс на 70-75 %. Биосорберы оказались весьма эффективны в качестве «барьерных сооружений» для снижения концентраций различных веществ антропогенного характера. При этом они хорошо зарекомендовали себя как в условиях долговременного воздействия загрязнений, так и в условиях пиковых нагрузок, имитирующих возможные аварийные ситуации.

При искусственном введении характерных ингредиентов антропогенного происхождения в исходную воду (нафтален, бифенил, нефтепродукты, линдан, симазин, карбофос, фенол, 2-4-дихлорфенол, бензапирен) с концентрациями до 100 ПДК для каждого из загрязнений биосорберы обеспечили практически полное их удаление. Наблюдения подтвердили, что в биосорберах одновременно протекают три процесса - адсорбция загрязнений, их модификация в микропористой структуре сорбента в биоразлагаемую форму и биологическое окисление. Наличие дополнительной адсорбционной емкости активированного угля позволяет извлекать и аккумулировать в относительно короткие промежутки времени значительно большее количество загрязнений, чем может быть окислено биологическим путем. Эти загрязнения извлекаются сорбентом, а затем постепенно окисляются бактериями и их ферментами в микропористой структуре сорбента.

В последние годы все большее внимание уделяется вопросу применения мембранного фильтрования для очистки природных вод. Мембранная технология широко используется в зарубежной практике. В течение последних двадцати лет большое внимание исследователей уделялось разработке мембранных биореакторов для очистки сточных вод на базе ультра- и микрофильтрации как альтернативной технологии для улучшения и усовершенствования традиционных систем обработки природных и сточных вод с активным илом .

M. Clever, N. Rabiger, M. Rudebusch провели длительные исследования по изучению процесса очистки природных вод, основанной на мембранном фильтровании. Эксперимент проводился в промышленном масштабе на природной воде р. Мейн, с использованием ультрафильтрационных мембран и специально разработанной методикой эксплуатации. В исследовании авторов отмечалось, что ультрафильтрация является альтернативой обычным процессам обработки природных вод, таким как озонирование, коагуляция, флокуляция, хлорирование и т.д. .

В исследовании А. Андрианова, А. Первова теоретически обоснован и разработан процесс очистки природных вод методом ультрафильтрации. Предложена методика определения параметров эксплуатации систем ультрафильтрации. Разработана экспериментальная экспресс-методика, позволяющая в течение короткого времени определить оптимальные режимы (частота и продолжительность промывки) и дать прогноз работы ультрафильтрационной установки очистки воды. Предложенные рекомендации легли в основу разработки систем ультрафильтрации, используемых НИИ ВОДГЕО для обезжелезивания подземных вод, очистки поверхностных вод и улучшения качества водопроводной воды на объектах водоснабжения .

Использование мембран в мембранном биореакторе позволяет задерживать практически всю биомассу, в связи с этим происходит накопление видов бактерий с большим периодом генерации, способных деструктировать устойчивые загрязнители.

В процессе эксплуатации в порах мембраны откладываются соли, а на поверхности образуются биообрастания, препятствующие фильтрованию воды. Регенерацию можно осуществлять дозированием химических реагентов, растворяющих отложения, в биореактор или же извлечением мембранных модулей с последующим погружением в емкости, наполненные регенерационными растворами. Снятие с поверхности мембран накапливающихся загрязнений может осуществляться крупнопузырчатой аэрацией мембранного модуля.

Следует отметить, что мембранная фильтрация не может обеспечить удаления молекул, меньших по размеру, чем размер пор в мембране, а уменьшение размера пор неизбежно ведет к возрастанию трансмембранного давления и, как следствие, к увеличению энергозатрат на эксплуатацию мембранных установок.

Совмещение мембранной фильтрации и адсорбции на порошкообразном активном угле является дальнейшим развитием мембранной и биосорбционных технологий очистки воды и способно обеспечить удаление большего количества загрязняющих веществ из природных вод. Биосорбционную технологию на ПАУ при этом возможно реализовать с использованием ультрафильтрационных и микрофильтрационных мембранных элементов, характеризующихся невысоким трансмембранным давлением.

В литературе неоднократно отмечались преимущества и перспективность комбинированных методов очистки для кондиционирования природных вод и проводились исследования на водах таких водоисточников, как р. Москва и р. Дон . Согласно эффективность очистки воды р. Москва в биосорбционном мембранном реакторе по мутности составляет 99-100 %, цветности - 50-60 %, перманганатной окисляемости - 30-35 %, нефтепродуктам - 95-98 %.

Однако необходимо отметить, что недостаточная теоретическая изученность ряда вопросов и отсутствие надежных инженерных решений в отечественной практике вызывает необходимость проведения специальных экспериментальных исследований с различными типами сорбентов и мембран.

Приведенные данные позволяют сделать следующие выводы, что наличие в природных водах трудноокисляемых соединений, а также образование в процессе водоочистки хлорорганических соединений ограничивает возможность применения традиционных технологий кондиционирования природных вод, поэтому для удаления из природных вод биогенных элементов и специфических органических загрязнений наиболее перспективной технологией является биосорбционный метод, с последующим мембранным разделением.

Библиографическая ссылка

Федотов Р.В., Щукин С.А., Степаносьянц А.О., Чепкасова Н.И. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОЧИСТКИ ПРИРОДНЫХ ВОД ОТ АНТРОПОГЕННЫХ ЗАГРЯЗНЕНИЙ // Современные наукоемкие технологии. – 2016. – № 9-3. – С. 452-456;
URL: http://top-technologies.ru/ru/article/view?id=36249 (дата обращения: 18.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Промышленная водоподготовка – важный этап в производстве многих видов продукции. Ежедневно потребляя различные напитки, мы даже не задумываемся о том, сколько этапов фильтрации проходит вода, из которой они изготовлены. Не менее важна и промышленная очистка сточных вод, вместе с которыми в природные источники попадает масса вредных химических веществ. Промышленной подготовке подвергается и вода, которая подается в центральные системы водоснабжения.

С каждым годом проблема нехватки питьевой воды встает все острее. Уже сейчас порядка 1/6 части жителей Земли не имеют доступа к ней. Среди причин дефицита пресной воды:

  • высокий расход, превышающий потребности;
  • растущая численность населения;
  • таяние ледников;
  • загрязнением поверхностных вод бытовыми и промышленными отходами.

Основными источниками загрязнения являются коммунальные и промышленные стоки. Первые содержат в себе различные вредоносные бактерии, способные спровоцировать серьезные заболевания. Вторые – скопление всевозможных химических веществ: кислот и щелочей, тяжелых металлов, нефтепродуктов и т.д.

Промышленная очистка воды подразделяется на водоподготовку и водоочистку. Под водоподготовкой понимают очищение и обеззараживание воды в целях ее . На этапе водоподготовки происходит осветление, умягчение, дегазация, дезодорация и дезинфекция.

Под осветлением понимают удаление различных взвешенных и растворенных частиц, которые вызывают цветность и мутность. Умягчению способствует выведение солей кальция и магния. Благодаря дегазации из жидкости устраняются различные растворенные газы, например, сероводород. Дезинфекция приводит к уничтожению патогенной микрофлоры, а на этапе дезодорация уходят посторонние неприятные запахи.

Для достижения вышеперечисленных целей используют способы трех групп:

  1. Физические.
  2. Химические.
  3. Физико-химические.

Физические способы (методы) очистки

Физические способы промышленной очистки воды удаляют примеси без использования реагентов. В основе таких методов лежат разнообразные физические явления. К данной группе относят:

  1. Механическую фильтрацию.
  2. Ультрафильтрацию.
  3. Нанофильтрацию.
  4. Микрофильтрацию.

Механическая фильтрация воды

Промышленная очистка воды механической фильтрацией является самым простым методом, проводят ее на первичном этапе водоподготовки. Механические фильтры подразделяют на фильтры грубой и фильтры тонкой очистки.

Фильтры грубой очистки устанавливаются на этапе водозабора. Принцип работы состоит в том, что сито препятствует прохождению крупных частиц примесей: песка, глины, органики, солей кальций и магния. В народе такие фильтры получили название «грязевики». Они являются обязательным элементом водоподготовки. Благодаря им уничтожается цветность и мутность, а также уходят неприятные запахи.

Фильтры тонкой очистки в основе имеют картридж с сорбентом, проходя через который вода очищается от различных газов, химических соединений, некоторых микроорганизмов.

Среди методов физического воздействия особую популярность приобрели мембранные технологии. Основное отличие таких фильтров друг от друга – пропускная способность мембраны.

Системы обратного осмоса

Наиболее эффективной мембранной технологией является водоподготовка посредством . Размер пор в обратноосмической мембране составляет менее 0,0001 мкм. Такая мембрана пропускает молекулы воды и кислорода, задерживая при этом различные примеси. Обратноосмические фильтры способны очищать воду на молекулярном уровне практические до состояния дистиллированной.

К мембране в установках обратного осмоса раствор должен подходить очищенным от механических примесей. Поэтому системы обратно осмоса состоят из нескольких элементов, основные из них:

  1. Фильтр-предочистки, который удаляет первичную грязь.
  2. Фильтр тонкой очистки с сорбирующим материалом.
  3. Мембрана.
  4. Минерализатор. Помимо вредных загрязнений обратноосмическая мембрана уничтожает и необходимые человеку минералы, баланс которых восстанавливает минерализатор. Помимо данного картриджа в систему могут быть добавлены ионизатор и умягчающий блок.

К недостаткам данного способа относятся низкая производительность, габаритность установки и потеря воды, которая сливается с примесями.

Нанофильтрация

Второе место по пропускной способности занимает мембрана нанофильтрации, размер пор которой составляет 0,001-0,002 мкм. По сути, данные фильтры являются разновидностью обратного осмоса, очищают от бактерий и вирусов, солей жесткости, нитритов, нитратов и других примесей.

Применяется в пищевой, фармацевтической, лакокрасочной и нефтехимической промышленности.

Преимуществом данного метода в отличие от обратного осмоса является сохранение в процессе очистки полезных минералов. Именно поэтому, вода, очищенная по данной технологии, является более предпочтительной в производстве напитков.

К тому же, процесс нанофильтрации более экономичен , поскольку протекает при меньшем давлении.

Ультрафильтрация

Способ ультрафильтрации по принципу действия схож с системами обратного осмоса. Вода проходит через мембрану, которая задерживает микроорганизмы, водоросли, взвешенные частицы, способствует устранению мутности и цветности. Величина пор такой мембраны составляет 0,002…0,1 мкм, что больше размера пор в мембранах обратного осмоса и нанофильтрации. Ультрафильтрация не способствует удалению солей металлов, за счет чего вода нуждается в дополнительном смягчении.

Выше мы сказали, что данный метод по принципу действия схож с обратным осмосом, но есть и отличия.

  1. Мембрана в ультрафильтрации состоит многоканальных волокон, которые изготавливаются из модифицированного полиэстерсульфона. Число волокон составляет несколько десятков тысяч. Мембрана обратного осмоса изготовлена из синтетических материалов и представляет цилиндр из смотанной в рулон пленки.
  2. При ультрафильтрации загрязнения остаются внутри мембраны. В случае обратного осмоса после очистки из мембраны выходят два потока воды. Первый – очищенная жидкость, второй – концентрат, который сливается. Таким образом, в обратноосмических системах при очистке теряется до 1/3 воды.
  3. Ультрафильтрация в отличие от обратного осмоса не удаляет соли жесткости.

Технологическая цепочка ультрафильтрации

  1. Жидкость проходит через фильтр грубой очистки для удаления механических загрязнений, которые могут повредить мембрану.
  2. Затем взаимодействует с мембраной.
  3. Минуя модуль, вода поступает в бак чистой воды, который также называется баком обратной промывки – вода из него используется для промывки мембран от поверхностных загрязнений.

Преимуществами ультрафильтрации являются:

  • компактность оборудования;
  • максимальная дезинфекция и удаление взвеси;
  • не использование химических реагентов, хотя иногда на этапе подачи воды в систему очистки в нее могут добавлять коагулянты.

Микрофильтрация

Из мембранных методов микрофильтрация обладает модулем с самыми большими порами, размер которых составляет 0,1 до 1 мкм. Часто используется в качестве предварительного этапа очистки перед обратным осмосом или нанофильтрацией, максимально очищает от механических примесей.

Химические способы (методы) очистки воды

Принцип действия химических методов заключается в добавлении в воду специальных реагентов, которые способствуют ее очистке.

Хлорирование

Обеззараживающее воздействие хлора было обнаружено еще в 19 веке. В 1846 врачи одного из госпиталей Вены стали ополаскивать руки водой с хлором. Так было положено начало применения хлора в качестве дезинфектора.

Хлор является сильным окислителем, взаимодействуя с водой, образует хлорноватистую кислоту, которая и уничтожает бактерии. Для достижения эффекта необходимо обеспечить контакт воды с хлором минимум на 30 мин. Эффект от воздействия хлорноватистой кислоты может сохраняться еще долгое время после непосредственной обработки, для этого необходимо ввести хлор в избытке. Доза реагента в каждом случае рассчитывается индивидуально. Важно не переборщить с избытком, поскольку в большом количестве хлор способен привести к проблемам в работе организма, особенно опасны соединения, образуемые данным веществом. Например, тригалометаны вызывают симптомы астмы.

Различают несколько видов хлорирования:

  • предварительное;
  • финишное

Предварительное хлорирование осуществляется на этапе водозабора. Цель реагента на этом этапе не только уничтожить бактерии, но и вывести металлы из воды путем их окисления, также хлор дезинфицирует очистное оборудование.

Финишное хлорирование применяется на последней стадии подготовки в целях обеззараживания.

В зависимости от дозы вводимого реагенты хлорирование бывает:

  • нормальное;
  • перехлорирование;
  • комбинированное.

Нормальное хлорирование используется для очищения воды при хороших санитарных и химико-физических подателей.

Перехлорирование применяют в случае сильной зараженности источников водозабора, когда нормальное хлорирование бессильно перед патогенной микрофлорой. Дозу реагента вводят в избытке, который может привести к изменению органолептических показателей воды. Остаточный хлор удаляют путем дехлорирования. Для этого используют методы безнапорной аэрации, коагуляции или фильтрации воды через активированный уголь.

Комбинированные методы подразумевают обработку воды хлором в сочетании с другими реагентами: серебром, медью, магнием и т.д. Применяются для повышения воздействия хлора, а также обеспечения пролонгирующего эффекта.

К достоинствам хлорирования относятся:

  • эффективность;
  • простота в использовании;
  • экономичность способа;
  • комплексное в очищении воды.

Среди недостатков можно выделить:

  • серьезные требования к хранению и перевозке хлорсодержащих соединений;
  • образование посторонних соединений, которые в случае попадания в человеческий организм представляют серьезную угрозу;
  • устойчивость ряда микроорганизмов к воздействию хлора.

Озонирование

Озонирование является одним из современных методов водоподготовки и очистки сточных свод. Применяется в пищевой, химический и медицинской промышленности.

Озон является сильным окислителем, разрушающе воздействует на бактерии, вирусы, грибки, металлы и различные химические соединения, благодаря чему способствует обесцвечиванию, дезодорации и обезвреживанию воды. Доказано, что большинство известных микроорганизмов не устойчивы к влиянию газа.

Обладая коротким периодом распада, озон не выпадает в осадок, а преобразуется в кислород, что делает воду полезной. Почти мгновенный распад молекул газа в то же время является и серьезным недостатком озонирования, поскольку уже через 15-20 минут после обработки возможно повторное заражение воды. Некоторые источники свидетельствуют о том, что озон способствует «пробуждению» спящих микроорганизмов.

К существенным недостаткам метода относятся:

  1. Коррозионная активность воды, обработанной озоном.
  2. Опасность в случае передозировки реагентом и серьезная техника безопасности в процессе очистки.
  3. Высокая стоимость специальной установки – озонатора.

Обезжелезивание

Отдельного внимание заслуживает оборудование для обезжелезивания, поскольку железо в растворенном состоянии засоряет промышленное оборудование, в результате чего оно быстро ломается. В основе фильтров обезжелезивания используется специальный материал «Greensand», который представляет собой мелкозернистый песок, покрытый сверху диоксидом марганца. Именно диоксид магния и окисляет молекулы железа, которые затем выпадают в осадок. Фильтр обезжелезивания является неотъемлемой частью современных установок фильтрации воды.

Физико-химические способы очистки воды

Физико-химические способы объединяют в себе очистку реагентами и механическое удаление примесей. К наиболее распространенным способам данной группы относятся:

  • адсорбация;
  • коагуляция;
  • флотация.

Адсорбация

Под адсорбации понимают процесс поглощения молекул загрязнения поверхностью адсорбента – твердого тела с пористой поверхностью. Одним их самым популярных адсорбентов является активированный уголь, который способен очистить воду от углеводорода, нефтепродуктов, хлора и фосфора, а также стимулировать разложение озона и фосфора.

Часто фильтры на основе активированного угля используются для итоговой очистки воды. Являются незаменимым элементом практически любой системы фильтрации. К недостаткам угольных фильтров относят быстрое засорение картриджа, что требует его частой замены.

Разновидностью адсорбации является ионный обмен. Фильтры на основе ионного обмена имеют в своем составе картридж со смолой, которая содержит ионы натрия. Проходя через такой фильтр, вода с повышенным содержанием солей умягчается. Соли вода замещают готовые к обмену ионы натрия, благодаря чему вода после прохождения через такой фильтр получается мягкой и насыщенной натрием.

К сожалению, ионообменные фильтры быстро засоряются и требуют частой замены картриджей.

Коагуляция

Метод коагуляции основывается на том, что специальные вещества – коагулянты, притягивают к себе загрязнения – соли металлов, песок, глину, а затем в виде хлопьев выпадают в осадок. После отстаивания такая вода либо подвергается дальнейшей очистке посредством фильтрации, либо сливается. Метод получил широкое распространение в очистке на промышленных предприятиях

В роли коагулянтов могут быть сернокислый алюминий, сернокислое и хлорное железо, алюмокалиевые квасцы, алюминат натрия.

Разновидностью коагуляции является флокуляция. В отличие от коагуляции, слипание частиц происходит не только в момент их непосредственного соприкосновения, но и в процессе опосредованного соприкосновения молекул.

Флотация

Метод флотации активно используют для очистки сточных вод в промышленности. Эффективен при . Принцип действия основывается на добавлении в воду диспергированного воздуха, под воздействием которого молекулы загрязнений скапливаются на поверхности воды в виде белой пены, после чего удаляются специальным оборудованием. После флотации вода подвергается дополнительной очистке посредством сорбции.

К достоинствам флотации относят:

  1. Экономичность метода.
  2. Простоту конструкции.
  3. Быстроту очистки сточных вод.
  4. Возможность удаления нефтепродуктов.

Промышленные фильтры для очистки воды: виды, отличия, цены

Выше мы много сказали про методы промышленной водоподготовки и очистки сточных вод. Попытаемся классифицировать их в зависимости от вида загрязнения.

  1. Удаление механических примесей – механические и сорбционные фильтры, микрофильтрация.
  2. Обеззараживание – все мембранные методы, кроме микрофильтрации (обратный осмос, нанофильтрация, ультрафильтрация), озонирование.
  3. Обезжелезивание – хлорирование, озонирование, материал Greensand
  4. Очистка от сероводорода – напорная и безнапорная аэрация, хлорирование, озонирование, адсорбация.
  5. Удаление органики, хлора, озона – адсорбация, коагуляция
  6. Выведение нефтепродуктов – флотационные установки.
  7. Умягчение – ионный обмен, обратный осмос.

Стоимость промышленных фильтров зависит от сложности установки и используемых материалов, поэтому цену в каждом конкретном случае нужно уточнять индивидуально.

Вода совершенно необходима для жизни человека и всего живого в природе. Вода покрывает 70% земной поверхности, это: моря, реки, озёра и подземные воды. Во время своего определённого природными явлениями круговорота вода собирает в себя различные примеси и загрязнения, которые содержатся в атмосфере и на земной коре. В результате вода не бывает абсолютно чистой и беспримесной, но зачастую именно такая вода является основным источником как для хозяйственно-питьевого водоснабжения, так и для применения в различных отраслях промышленности (например, в качестве теплоносителя, рабочего тела в энергетике, растворителя, исходного сырья для получения продукции, продуктов питания и т. д.)

Природная вода является сложной дисперсной системой, в которой в большом количестве содержатся разнообразные минеральные и органические примеси. Из за того, что в большинстве случаев источниками водоснабжения являются поверхностные и подземные воды.

Состав обычной природной воды:

  • взвешенные вещества (коллоидные и грубодисперсные механические примеси неорганического и органического происхождения);
  • бактерии, микроорганизмы и водоросли;
  • растворённые газы;
  • растворённые неорганические и органические вещества (как диссоциированные на катионы и анионы, так и недиссоциированные).

При оценке свойств воды принято разделять параметры качества воды на:

  • физические,
  • химические
  • санитарно-бактериологические.

Под качеством понимают соответствие нормам, установленным для данного вида производства воды. Вода и водные растворы очень широко применяются в различных отраслях промышленности, коммунального и сельского хозяйства. Требования к качеству очищенной воды зависят от назначения и области применения очищенной воды.

Наиболее широко применяется вода для питьевых целей. Нормативы требований в данном случае определяются СанПиН 2.1.4.559-02. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» . Например, некоторые из них:

Таб. 1. Основные требования к ионному составу воды, используемой для хозяйственно-питьевого водоснабжения

Для коммерческих потребителей зачастую требования к качеству воды ужесточаются по некоторым параметрам. Так, например, для производства воды бутилированной разработан специальный стандарт с более жёсткими требованиями, предъявляемыми к воде - СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества». В частности, ужесточены требования к содержанию основных солей и вредных компонентов – нитратов, органики и т.п.

Вода технического и специального назначения – это вода для применения в промышленности или в коммерческих целях, для специальных технологических процессов - со специальными свойствами, регламентируемыми соответствующими стандартами РФ или технологическими требованиями Заказчика. Например, приготовление воды для энергетики (согласно РД, ПТЭ), для гальваники, приготовление воды для водки, приготовление воды для пива, лимонадов, медицины (фармакопейная статья) и т.п.

Зачастую требования к ионному составу данных вод значительно выше, чем к питьевой воде. Например, для теплоэнергетики, где вода используется как теплоноситель, подвергается нагреву, существуют соответствующие стандарты. Для электростанций существуют так называемые ПТЭ (Правила технической эксплуатации), для общей теплоэнергетики требования заданы так называемыми РД (Руководящим Документом). Например, согласно требований «Методических указаний по надзору за водно-химическим режимом паровых и водогрейных котлов РД 10-165-97», значение общей жёсткости воды для паровых котлов с рабочим давлением пара до 5 МПа (50 кгс/см2) должно быть не более 5 мкг-экв/кг. В то же время питьевой стандарт СанПиН 2.1.4.559-02 требует, чтобы Жо была не выше 7 мг-экв/кг.

Поэтому задача химической водоочистки (ХВО) для котельных, электростанций и других объектов, требующих водоподготовки перед нагревом воды заключается в предотвращении образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной энергопотерь, а развитие коррозии может привести к полной остановке работы котлов, теплообменников из-за образования осадков на внутренней части оборудования.

Следует иметь в виду, что технологии и оборудования водоподготовки и ХВО для электростанций значительно отличаются от соответствующего оборудования обычных водогрейных котельных.

В свою очередь, технологии и оборудования водоподготовки и ХВО для получения воды для других целей также разнообразны и диктуются как параметрами исходной воды, подлежащей очистке, так и требованиями к качеству очищенной воды.

ООО «СВТ-Инжиниринг», имея опыт работы в данной области, обладая квалифицированными кадрами и партнерскими отношениями со многими ведущими зарубежными и отечественными специалистами и фирмами, предлагает своим клиентам, как правило, те решения, которые целесообразны и оправданны для каждого конкретного случая, в частности, основанные на следующих базовых технологических процессах:

  • Применение ингибиторов и реагентов для обработки воды в различных системах ХВО (как для защиты мембран, так и теплоэнергетического оборудования)

Большинство технологических процессов обработки вод различных типов, в том числе и сточных, известны и используются сравнительно давно, постоянно видоизменяясь и совершенствуясь. Тем не менее, ведущими специалистами и организациями во всем мире проводятся работы по разработке и новых технологий.

ООО «СВТ-Инжиниринг» также имеет опыт проведения НИОКР по заказу клиентов с целью повышения эффективности существующих способов очистки воды, разработки и усовершенствованию новых технологических процессов.

Особо следует отметить, что интенсивное использование природных водных источников в хозяйственной деятельности обуславливает необходимость экологического совершенствования систем водопользования и технологических процессов водоподготовки. Требования охраны природной среды предполагают максимальное сокращение отходов водоподготовительных установок в естественные водоемы, почву и атмосферу, что также вызывает необходимость дополнять технологические схемы водоподготовки ступенями утилизации отходов, их переработки и переводу во вторично используемые вещества.

К настоящему времени разработано достаточно большое число способов, которые позволяют создавать малоотходные системы водоподготовки. В первую очередь к ним следует отнести усовершенствованные процессы предварительной очистки исходной воды реагентами в осветлителях с ламелями и рециркуляцией шлама, мембранные технологии, деминерализацию на основе испарителей и термохимических реакторов, коррекционную обработку воды ингибиторами солевых отложений и коррозионных процессов, технологии с противоточной регенерацией ионитных фильтров и более совершенными ионообменными материалами.

Каждый из этих способов имеет свои преимущества, недостатки и ограничения их применения по качеству исходной и очищенной воды, объёму стоков и сбросов, параметрам использования очищенной воды. Дополнительную информацию, необходимую для решения Ваших проблем и условиях сотрудничества, вы можете получить, сделав запрос или обратившись офис нашей фирмы.

В данном разделе подробно описаны существующие традиционные методы водоподготовки, их преимущества и недостатки, а также представлены современные новые методы и новые технологии улучшения качества воды в соответствии с требованиями потребителей.

Основные задачи водоподготовки - это получение на выходе чистой безопасной воды пригодной для различных нужд: хозяйственно-питьевого, технического и промышленного водоснабжения с учётом экономической целесообразности применения необходимых методов водоочистки, водоподготовки. Подход к водоочистке не может быть везде одинаковым. Различия обусловлены составом воды и требованиями к её качеству, которые существенно различаются в зависимости от назначения воды (питьевой, технической и т.д.). Однако существует набор типичных процедур, используемых в системах водоочистки и последовательность, в которой используются эти процедуры.


Основные (традиционные) методы обработки воды.

В практике водоснабжения в процессе очистки и обработки вода подвергается осветлению (освобождение от взвешенных частиц), обесцвечиванию (устранение веществ, придающих воде цвет), обеззараживанию (уничтожение находящихся в ней болезнетворных бактерий). При этом в зависимости от качества исходной воды в некоторых случаях дополнительно применяются и специальные методы улучшения качества воды: умягчение воды (понижение жесткости, обусловленной наличием солей кальция и магния); фосфатирование (для более глубокого умягчения воды); опреснение , обессоливание воды (снижение общей минерализации воды); обескремнивание, обезжелезивание воды (освобождение воды от растворимых соединений железа); дегазация воды (удаление из воды растворимых газов: сероводорода H 2 S, CO 2 , O 2); дезактивация воды (удаление из воды радиоактивных веществ.); обезвреживание воды (удаление ядовитых веществ из воды), фторирование (добавления в воду фтора) или обесфторирование (удаление соединений фтора); подкисление или подщелачивание (для стабилизации воды). Иногда требуется устранять привкусы и запахи, предотвращать коррозионное действие воды и т.п. Те или иные комбинации указанных процессов применяют в зависимости от категории потребителей и качества воды в источниках.

Качество воды в водном объекте и, определяется целым рядом показателей (физических, химических и санитарно-бактериологических), в соответствии с назначением воды и установленными нормативами качества . Подробно об этом в следующем разделе. Сравнивая данные качества воды (полученные по результатам анализа) с требованиями потребителей определяют мероприятия для ее обработки.

Проблема очистки воды охватывает вопросы физических, химических и биологических изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

Способ обработки воды, состав и расчетные параметры очистных сооружений для технического водоснабжения и расчетные дозы реагентов устанавливают в зависимости от степени загрязнения водного объекта, назначения водопровода, производительности станции и местных условий, а также на основании данных технологических исследований и эксплуатации сооружений, работающих в аналогичных условиях.

Очистка воды производится в несколько этапов. Мусор и песок удаляются на этапе предочистки. Сочетание первичной и вторичной очистки, проводимое на водоочистных сооружениях (ВОС), позволяет избавиться от коллоидного материала (органических веществ). Растворенные биогены устраняются при помощи доочистки. Чтобы очистка была полной, водоочистные сооружения должны устранить все категории загрязнителей. Для этого существует множество способов.

При соответствующей доочистке, при качественной аппаратуре ВОС можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.

Основные способы водоочистки

Осветление воды

Осветление - это этап водоочистки, в процессе которого происходит устранение мутности воды путем снижения содержания в ней взвешенных механических примесей природных и сточных вод. Мутность природной воды, особенно поверхностных источников в паводковый период, может достигать 2000-2500 мг/л (при норме для воды хозяйственно-питьевого назначения - не более 1500 мг/л).

Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры , представляющие собой наиболее распространенные водоочистные сооружения. Одним из наиболее широко применяемых на практике способов снижения в воде содержания тонкодисперсных примесей является их коагулирование (осаждение в виде специальных комплексов - коагулянтов) с последующим осаждением и фильтрованием. После осветления вода поступает в резервуары чистой воды.

Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Осветление фильтрованием с предварительным коагулированием способствуют значительному снижению бактериальной загрязненности воды. Однако среди оставшихся после водоочистки в воде микроорганизмов могут оказаться и болезнетворные (бациллы брюшного тифа, туберкулёза и дизентерии; вибрион холеры; вирусы полиомиелита и энцефалита), являющиеся источником инфекционных заболеваний. Для окончательного их уничтожения вода, предназначенная для хозяйственно-бытовых целей, должна быть в обязательном порядке подвергнута обеззараживанию .

Недостатки коагуляции , отстаивания и фильтрации: затратные и недостаточно эффективные методы водоочистки, в связи с чем требуются дополнительные методы улучшения качества.)

Обеззараживание воды

Обеззараживание или дезинфекция - завершающий этап процесса водоочистки. Цель - это подавление жизнедеятельности содержащихся в воде болезнетворных микробов. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

В технологии водоподготовки известен ряд методов обеззараживания воды, который можно классифицировать на пять основных групп: термический ; сорбция на активном угле; химический (с помощью сильных окислителей); олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей). Из перечисленных методов наиболее широко распространены методы третьей группы. В качестве окислителей применяют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору , хлорной извести, гипохлориду натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

Обеззараживанию подлежит вода, прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка или отстаивание, фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном состоянии бактерии и вирусы, оставаясь вне воздействия обеззараживающих агентов.

Обеззараживание воды сильными окислителями.

В настоящее время на объектах жилищно-коммунального хозяйства для обеззараживания воды, как правило, применяется хлорирование воды. Если вы пьете воду из-под крана, то должны знать, что в ней есть хлорорганические соединения, количество которых после процедуры обеззараживании воды хлором достигает 300 мкг/л. Причем это количество не зависит от начального уровня загрязнения воды, эти 300 веществ образуются в воде благодаря хлорированию. Потребление такой питьевой воды очень серьезно может сказаться на здоровье. Дело в том, что при соединении органических веществ с хлором образуются тригалометаны. Эти производные метана обладают выраженным канцерогенным эффектом, что способствует образованию раковых клеток. При кипячении хлорированной воды в ней образуется сильнейший яд - диоксин. Уменьшить содержание тригалометанов в воде можно, снизив количество используемого хлора или заменив его другими дезинфицирующими веществами, например, применяя гранулированный активированный уголь для удаления образующихся при очистке воды органических соединений. И, конечно, нужен более детальный контроль за качеством питьевой воды.

В случаях же высокой мутности и цветности природных вод распространенно используют предварительное хлорирование воды, однако этот способ обеззараживания, как было описано выше, не только не достаточно эффективный, но и просто вредный для нашего организма.

Недостатки хлорирования: недостаточно эффективный и при этом приносит необратимый вред для здоровья, так как образование канцерогена тригалометанов способствует образованию раковых клеток, а диоксина - привести к сильнейшему отравлению организма.

Обеззараживать воду без хлора экономически нецелесообразно, поскольку альтернативные методы обеззараживания воды (например,обеззараживаниес помощью ультрафиолетового излучения ) достаточно затратные. Был предложен альтернативный хлорированию метод обеззараживания воды с помощью озона.

Озонирование

Более современной процедурой обеззараживания воды считается очищение воды с помощью озона. Действительно, озонирование воды на первый взгляд безопаснее хлорирования, но тоже имеет свои недостатки. Озон очень нестоек и быстро разрушается, поэтому его бактерицидное действие непродолжительно. А ведь вода должна еще пройти через водопроводную систему, прежде чем оказаться в нашей квартире. На этом пути ее поджидает немало неприятностей. Ведь не секрет, что водопроводы в российских городах крайне изношены.

Кроме того, озон тоже вступает в реакцию со многими веществами в воде, например с фенолом, и образовавшиеся в результате продукты еще токсичнее хлорфенольных. Озонирование воды оказывается крайне опасным в тех случаях, если в воде присутствуют ионы брома хотя бы в самых ничтожных количествах, трудно определяемых даже в лабораторных условиях. При озонировании возникают ядовитые соединения брома - бромиды, опасные для человека даже в микродозах.

Метод озонирования воды очень хорошо зарекомендовал себя для обработки больших масс воды - в бассейнах, в системах коллективного пользования, т.е. там, где нужно более тщательное обеззараживание воды. Но необходимо помнить, что озон, как и продукты его взаимодействия с хлорорганикой ядовитый, поэтому присутствие больших концентраций хлорорганики на стадии водоочистки может быть чрезвычайно вредным и опасным для организма.

Недостатки озонирования: бактерицидное действие непродолжительное, в реакции с фенолом еще токсичнее хлорфенольных, что более опасно для организма, чем хлорирование.

Обеззараживание воды бактерицидными лучами.

ВЫВОДЫ

Все вышеперечисленные методы недостаточно эффективны, не всегда безопасны, и более того экономически нецелесообразны: во-первых - дорогостоящие и очень затратные, требующие постоянных расходов на обслуживание и ремонт, во-вторых - с ограниченным сроком службы, и в третьих - с большим расходом энергоресурсов.

Новые технологии и инновационные методы улучшения качества воды

Внедрение новых технологий и инновационных методов водоподготовки позволяет решать комплекс задач, обеспечивающих:

  • производство питьевой воды, отвечающей установленным стандартам и ГОСТАм, удовлетворяющей требованиям потребителей;
  • надежность очистки и обеззараживания воды;
  • эффективную бесперебойную и надежную работу водоочистных сооружений;
  • снижение себестоимости водоочистки и водоподготовки;
  • экономию реагентов, электроэнергии и воды на собственные нужды;
  • качество производства воды.

Среди новых технологий улучшения качества воды можно выделить:

Мембранные методы на основе современные технологий (включающие в себя макрофильтрацию; микрофильтрацию; ультрафильтрацию; нанофильтрацию; обратный осмос). Применяются для опреснения сточных вод , решают комплекс задач водоочистки, но очищенная вода не значит еще, что она полезная для здоровья. Более того данные методы являются дорогостоящими и энергоёмкими, требующими постоянные расходы на обслуживание.

Безреагентные методы водоподготовки. Активация (структурирование) жидкости. Способов активации воды на сегодняшний день известно множество (например, магнитные и электромагнитные волны; волны ультразвуковых частот; кавитация; воздействие различными минералами, резонансные и др.). Метод структурирования жидкости обеспечивает решение комплекса задач водоподготовки (обесцвечивание, умягчение, обеззараживание, дегазацию, обезжелезивание воды и т.д.), при этом исключает химводоподготовку.

Показатели качества воды зависят от применяемых методов структурирования жидкости и зависят от выбора применяемых технологий, среди которых можно выделить:
- устройства магнитной обработки воды;

- электромагнитные методы;
- кавитационный метод обработки воды;
- резонансная волновая активация воды
(бесконтактная обработка на основе пьезокристаллов).

Гидромагнитные системы (ГМС) предназначены для обработки воды в потоке постоянным магнитным полем специальной пространственной конфигурации (применяются для нейтрализации накипи в теплообменном оборудовании; для осветления воды, например, после хлорирования). Принцип работы системы - магнитное взаимодействие ионов металлов, присутствующих в воде (магнитный резонанс) и одновременно протекающий процесс химической кристаллизации. ГМС основана на циклическом воздействии на воду, подаваемую в теплообменные аппараты магнитным полем заданной конфигурации, создаваемым высокоэнергетическими магнитами. Метод магнитной обработки воды не требует каких-либо химических реактивов и поэтому является экологически чистым. Но есть и недостатки . В ГМС используются мощные постоянные магниты на основе редкоземельных элементов. Они сохраняют свои свойства (силу магнитного поля) в течение очень длительного времени (десятки лет). Однако, если их перегреть выше 110 - 120 С, магнитные свойства могут ослабнуть. Поэтому ГМС необходимо монтировать там, где температура воды не превышает этих значений. То есть, до её нагрева, на линии обратки.

Недостатки магнитных систем: применение ГМС возможно при температуре не выше 110 - 120° С; недостаточно эффективный метод; для полной очистки необходимо применение в комплексе с другими методами, что в итоге экономически нецелесообразно.

Кавитационный метод обработки воды. Кавитация - образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. Суть кавитации - другое фазовое состояние воды. В условиях кавитации вода переходит из её естественного состояния в пар. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении ее скорости (гидродинамическая кавитация), либо при прохождении акустической волны во время полупериода разрежения (акустическая кавитация). Кроме того, резкое (внезапное) исчезновение кавитационных пузырьков приводит к образованию гидравлических ударов и, как следствие, к созданию волны сжатия и растяжения в жидкости с ультразвуковой частотой. Метод применятся для очистки от железа, солей жесткости и других элементов, превышающих ПДК, но слабо эффективен при обеззараживании воды. При этом значительно потребляет электроэнергию, дорогой в обслуживании с расходными фильтрующими элементами (ресурс от 500 до 6000 м 3 воды).

Недостатки: потребляет электроэнергию, недостаточно эффективный и дорогой в обслуживании.

ВЫВОДЫ

Вышеперечисленные методы наиболее эффективные и экологически чисты по сравнению с традиционными методами водоочистки и водоподготовки. Но имеют те или иные недостатки: сложность установок, высокая стоимость, необходимость в расходных материалах, сложности в обслуживании, необходимы значительные площади для установки систем водоочистки; недостаточная эффективность, и кроме этого ограничения по применению (ограничения по температуре, жесткости, pH воды и пр.).

Методы бесконтактной активации жидкости (БОЖ). Резонансные технологии.

Обработка жидкости осуществляется бесконтактным путем. Одно из преимуществ данных методов - структурирование (или активация) жидких сред, обеспечивающее все вышеперечисленные задачи активацией природных свойств воды без потребления электроэнергии.

Наиболее эффективная технология в этой области - Технология NORMAQUA (резонансная волновая обработка на основе пьезокристаллов ), бесконтактная, экологически чиста, без потребления электроэнергии, не магнитная, не обслуживаемая, срок эксплуатации - не менее 25 лет. Технология создана на основе пьезокерамических активаторов жидких и газообразных сред, представляющих собой резонаторы-инверторы, испускающие волны сверхмалой интенсивности. Как и при воздействии электромагнитных и ультразвуковых волн, под влиянием резонансных колебаний рвутся неустойчивые межмолекулярные связи, а молекулы воды выстраиваются в естественную природную физико-химическую структуру в кластеры.

Применение технологии позволяет полностью отказаться от химводоподготовки и дорогостоящих систем и расходных материалов водоподготовки, и добиться идеального баланса между поддержанием высочайшего качества воды и экономией расходов на эксплуатацию оборудования.

Снизить кислотность воды (повысить уровень рН);
- экономить до 30% электроэнергии на перекачивающих насосах и размывать ранее образовавшиеся отложения накипи за счет снижения коэффициента трения воды (повышения времени капиллярного всасывания);
- изменить окислительно-восстановительный потенциал воды Eh;
- снизить общую жесткость;
- повысить качество воды: ее биологическую активность, безопасность (обеззараживание до 100%) и органолептику.

1. Что понимают под пароводяным циклом котельных установок

Для надежной и безопасной работы котла важное значение имеет циркуляция воды в нем – непрерывное движение ее в жидкостной смеси по некоторому замкнутому контуру. В результате этого обеспечивается интенсивный отвод тепла от поверхности нагрева и устраняются местные застои пара и газа, что предохраняет поверхность нагрева от недопустимого перегревания, коррозии и предотвращает аварию котла. Циркуляция в котлах может быть естественной и принудительной (искусственной), создаваемой с помощью насосов.

На рис. приведена схема так называемого циркуляционного контура. В сосуд наливается вода, причем левое колесо U – образной трубки подогревают, образуется пар; удельный вес смеси пара и воды будет меньше по сравнению с удельным весом в правом колене. Жидкость в подобных условиях не будет, находится в состоянии равновесия. Например, А – А давление слева будет меньше, чем справа – начинается движение, которое и носит название циркуляции. Пар выделится с зеркала испарения, удаляясь далее из сосуда, а на него место в таком же количестве по весу поступит питательная вода.

Для расчета циркуляции решают два уравнения. Первое – выражает материальный баланс, второе баланс сил.

G под =G оп кг/сек, (170)

Где G под - количество воды и пара, движущихся в подъемной части контура, в кг/сек;

G оп - количество воды, движущихся в опускной части, в кг/сек.

N = ∆ρ кг/м 2 , (171)

где N– полный движущий напор, равный h(γ в - γ см), в кг;

∆ρ – сумма гидравлических сопротивлений в кг/м 2 , включая и силу инерции, возникающих при движении пароводяной эмульсии и воды по контору и вызывающих в итоге равномерное движение с определенной скоростью.

Обычно кратность циркуляции выбирается в пределах 10 – 50 и при малой тепловой нагрузки труб значительно больше 200 – 300.

М/сек,

2. Причины образования отложений в теплообменных аппаратах

Различные примеси, содержащиеся в нагреваемой и испаряемой воде, могут выделятся в твердую фазу на внутренних поверхностях парогенераторов, испарителей, паропреобразователей и конденсаторов паровых турбин в виде накипи, а внутри водяной массы – в виде взвешенного шлама. Нельзя, однако, провести четкую границу между накипью и шламом, так как вещества, отлагающиеся на поверхности нагрева в форме накипи, могут с течением времени превращаться в шлам и наоборот, шлам при некоторых условиях может прикипать к поверхности нагрева, образуя накипь.

Радиационные поверхности нагрева современных парогенераторов интенсивно обогреваются топочным факелом. Плотность теплового потока в них достигает 600–700 квт/м 2 , а местные тепловые потоки могут быть еще выше. Поэтому даже кратковременное ухудшение коэффициента теплоотдачи от стенки к кипящей воде приводит к столь значительному росту температуры стенки трубы (500–600 °С и выше), что прочность металла может оказаться недостаточной, чтобы выдержать возникшие в нем напряжения. Следствием этого являются повреждения металла, характеризующиеся появлением отдулин, свинца, а нередко и разрывом труб.

3. Опишите коррозию паровых котельных по пароводяному и газовому трактам

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 . Что понимают под пароводяным циклом котельных уст ановок

Пароводяной цикл это период, времени за который вода превращается в пар и этот период повторяется много раз.

Для надежной и безопасной работы котла важное значение имеет циркуляция воды в нем - непрерывное движение ее в жидкостной смеси по некоторому замкнутому контуру. В результате этого обеспечивается интенсивный отвод тепла от поверхности нагрева и устраняются местные застои пара и газа, что предохраняет поверхность нагрева от недопустимого перегревания, коррозии и предотвращает аварию котла. Циркуляция в котлах может быть естественной и принудительной (искусственной), создаваемой с помощью насосов.

В современных конструкциях котлов поверхность нагрева выполняется из отдельных пучков труб, подсоединенных к барабанам и коллекторам, которые образуют достаточно сложную систему замкнутых циркуляционных контуров.

На рис. приведена схема так называемого циркуляционного контура. В сосуд наливается вода, причем левое колесо U - образной трубки подогревают, образуется пар; удельный вес смеси пара и воды будет меньше по сравнению с удельным весом в правом колене. Жидкость в подобных условиях не будет, находится в состоянии равновесия. Например, А - А давление слева будет меньше, чем справа - начинается движение, которое и носит название циркуляции. Пар выделится с зеркала испарения, удаляясь далее из сосуда, а на него место в таком же количестве по весу поступит питательная вода.

Для расчета циркуляции решают два уравнения. Первое - выражает материальный баланс, второе баланс сил.

Первое уравнение формулируется так:

G под =G оп кг/сек, (170)

Где G под - количество воды и пара, движущихся в подъемной части контура, в кг/сек;

G оп - количество воды, движущихся в опускной части, в кг/сек.

Уравнение баланса сил может быть выражено следующей зависимостью:

N = ?? кг/м 2 , (171)

где N - полный движущий напор, равный h(? в - ? см), в кг;

Сумма гидравлических сопротивлений в кг/м 2 , включая и силу инерции, возникающих при движении пароводяной эмульсии и воды по контору и вызывающих в итоге равномерное движение с определенной скоростью.

В циркуляционном контуре котла имеется большое количество параллельно работающих труб, причем условия их работы не могут быть в силу ряда причин совершенно идентичны. Чтобы обеспечить бесперебойную циркуляцию во всех трубах параллельно работающих контуров и не вызвать в каком-нибудь из них опрокидывания циркуляции, необходимо увеличить скорость движения воды по контуру, что обеспечивается определенной кратностью циркуляции К.

Обычно кратность циркуляции выбирается в пределах 10 - 50 и при малой тепловой нагрузки труб значительно больше 200 - 300.

Расход воды в контуре с учетом кратности циркуляции равняется

где D = расход пара (питательной воды) рассчитываемого контура в кг/час.

Скорость воды при входе в подъемную часть контура можно определить из равенства

2 . Причины образования отло жений в теплообменных аппаратах

Различные примеси, содержащиеся в нагреваемой и испаряемой воде, могут выделятся в твердую фазу на внутренних поверхностях парогенераторов, испарителей, паропреобразователей и конденсаторов паровых турбин в виде накипи, а внутри водяной массы - в виде взвешенного шлама. Нельзя, однако, провести четкую границу между накипью и шламом, так как вещества, отлагающиеся на поверхности нагрева в форме накипи, могут с течением времени превращаться в шлам и наоборот, шлам при некоторых условиях может прикипать к поверхности нагрева, образуя накипь.

Из элементов парогенератора загрязнению внутренних поверхностей больше всего подвержены обогреваемые экранные трубы. Образование отложений на внутренних поверхностях парообразующих труб влечет за собой ухудшение теплопередачи и как следствие опасный перегрев металла труб.

Радиационные поверхности нагрева современных парогенераторов интенсивно обогреваются топочным факелом. Плотность теплового потока в них достигает 600-700 квт/м 2 , а местные тепловые потоки могут быть еще выше. Поэтому даже кратковременное ухудшение коэффициента теплоотдачи от стенки к кипящей воде приводит к столь значительному росту температуры стенки трубы (500-600 °С и выше), что прочность металла может оказаться недостаточной, чтобы выдержать возникшие в нем напряжения. Следствием этого являются повреждения металла, характеризующиеся появлением отдулин, свинца, а нередко и разрывом труб.

При резких температурных колебаниях в стенках парообразующих труб, которые могут иметь место в процессе эксплуатации парогенератора, накипь отслаивается от стенок в виде хрупких и плотных чешуек, которые заносятся потоком циркулирующей воды в места с замедленной циркуляцией. Там происходит осаждение их в виде беспорядочного скопления кусочков различных величин и формы, сцементированных шламом в более или менее плотные образования. Если в парогенераторе барабанного типа имеются горизонтальные или слабонаклонные участки парообразующих труб с вялой циркуляцией, то в них обычно происходит скопление отложений рыхлого шлама. Сужение сечения для прохода воды или полная закупорка парообразующих труб приводят к нарушению циркуляции. В так называемой переходной зоне прямоточного парогенератора до критического давления, где испаряются последние остатки влаги, и осуществляется небольшой перегрев пара, образуется отложения соединений кальция, магния и продуктов коррозии.

Поскольку прямоточный парогенератор является эффективной ловушкой труднорастворимых соединений кальция, магния, железа и меди. То при повышенном содержании их в питательной воде они быстро накапливаются в трубной части, что значительно сокращает продолжительность рабочей кампании парогенератора.

Для того чтобы обеспечить минимальные отложения как в зонах максимальных тепловых нагрузок парообразующих труб, как и в проточной части турбин, необходимо строго поддерживать эксплуатационные нормы допустимого содержания в питательной воде тех или иных примесей. С этой целью добавочная питательная вода подвергается глубокой химической очистки либо дистилляции на водоподготовительных установках.

Улучшение качества конденсатов и питательной воды заметно ослабляет процесс образования эксплуатационных отложений на поверхности паросилового оборудования, но полностью его не устраняет. Следовательно, в целях обеспечения должной чистоты поверхности нагрева необходимо наряду с одноразовой предпусковой очисткой проводить также периодические эксплуатационные очистки основного и вспомогательного оборудования и при том не только при наличии систематических грубых нарушений установленного водного режима и при недостаточной эффективности проводимых на ТЭС противокоррозионных мероприятий, но и в условиях нормальной эксплуатации ТЭС. Проведение эксплуатационных очисток особенно необходимо на энергоблоках с прямоточными парогенераторами.

3 . Опишите коррозию паровых котельных по пароводяному и газовому трактам

Металлы и сплавы, употребляемые для изготовления теплоэнергетического оборудования, обладают способностью вступать во взаимодействие с соприкасающейся с ними средой (вода, пар, газы), содержащей те или иные коррозионноагрессивные примеси (кислород, угольная и другие кислоты, щелочи и др.).

Существенным для нарушения нормальной работы парового котла является взаимодействие растворенных в воде веществ с обмыванием его металлом, в результате чего происходит разрушение металла, которое при известных размерах приводит к авариям и выходу из строя отдельных элементов котла. Такие разрушения металла окружающей средой называются коррозией. Коррозия всегда начинается с поверхности металла и постепенно распространяется в глубь.

В настоящее время различают две основные группы коррозионных явлений: химическая и электрохимическая коррозия.

К химической коррозии относятся разрушения металла в результате его непосредственного химического взаимодействия с окружающей средой. В теплосиловом хозяйстве примерами химической коррозии являются: окисление наружной поверхности нагрева горячими дымовыми газами, коррозия стали перегретым паром (так называемая пароводяная коррозия), разъедание металла смазочными материалами и др.

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.

Разрушение металла начинается, по существу, с растворения железа, заключающегося в том, что атомы железа теряют часть своих электронов, оставляя их в металле, и превращаются, таким образом, в положительно заряженные ионы железа, переходящие в водный раствор. Этот процесс не происходит равномерно по всей поверхности омываемого водой металла. Дело в том, что химически чистые металлы обычно недостаточно прочны и поэтому в технике применяют преимущественно их сплавы с другими веществами, как известно, чугун и сталь являются сплавами железа с углеродом. Помимо этого, к конструкции стали добавляют в небольших количествах для улучшения ее качества кремний, марганец, хром, никель и др.

По форме проявления коррозии различают: коррозию равномерную, когда разрушение металла происходит примерно на одинаковую глубину по всей поверхности металла и коррозию местную. Последняя имеет три основные разновидности: 1) язвенная коррозия, при которой разъедание металла развивается в глубину на ограниченной площади поверхности, приближающейся к точечным изъявлениям, что особенно опасно для котельного оборудования (образование в результате такой коррозии сквозных свищей); 2) избирательная коррозия, когда разрушается одна из составных частей сплава; например, в трубах конденсаторов турбин, изготовленных из латуни (сплав меди с цинком), при охлаждении их морской водой происходит удаление из латуни цинка, в результате чего латунь делается хрупкой; 3) межкристаллитная коррозия, возникающая преимущественно в недостаточно плотных заклепочных и вальцовочных соединениях паровых котлов при агрессивных свойствах котловой воды с одновременными чрезмерными механическими напряжениями в этих участках металла. Этот вид коррозии характеризуется появлением трещин, идущих по границам кристаллов металла, что делает металл хрупким.

4 . Какие поддерживают водно-химические режимы в котлах и отчего они зависят?

Нормальным режимом работы паровых котлов называется такой режим, при котором обеспечивается:

а) получение чистого пара; б) отсутствие на поверхностях нагрева котлов солевых отложений (накипи) и прикипания образовавшегося шлама (так называемой вторичной накипи); в) предотвращение всех типов коррозии котельного метала и пароконденсаторного тракта, несущего продукты коррозии в котел.

Перечисленные требования удовлетворяются путем принятия мер в двух основных направлений:

а) при подготовке исходной воды; б) при регулировании качества котловой воды.

Подготовка исходной воды в зависимости от ее качества и требований, связанных с конструкцией котла, может осуществляться путем:

а) докотловой обработки воды с удалением взвешенных и органических веществ, железа, накипеобразователей (Са, Mg), свободной и связанной углекислоты, кислорода, снижения щелочности и солесодержания (известкование, водород - катионтрование или сббесоливание и пр.);

б) внутрикотловой обработки воды (с дозировкой реагентов или обработкой воды магнитным полем при обязательном и надежном удалении шлама).

Регулирование качества котловой воды осуществляется путем продувки котлов, значительного сокращения размеров продувки можно достигнуть путем улучшения сепарационных устройств котла: ступенчатого испарения, выносных циклонов, промывки пара питательной водой. Совокупность осуществления перечисленных мероприятий, обеспечивающих нормальную работу котлов, называют вода - химическим режимом работы котельной.

Применение любого метода обработки воды: внутри котлового, до котлового с последующей коррекционной обработкой химически очищенной или питательной воды - требует осуществления продувки паровых котлов.

В условиях эксплуатации котлов различают два способа продувки котлов: периодическая и непрерывная.

Периодическая продувка из нижних точек котла осуществляется для удаления грубодисперсного шлама, оседающего в нижних коллекторах (барабанах) котла или контурах с вялой циркуляцией воды. Производится она по установленному графику в зависимости от степени зашламленности котловой воды, но не реже одного раза в смену.

Непрерывная продувка котлов обеспечивает необходимую чистоту пара, поддерживая определенный солевой состав котловой воды.

5 . Опишите устройство зернистых осветительны х фильтров и принцип их работы

Осветление воды фильтрованием широко применяется в технологии обработки воды, для этого осветляемую воду фильтрует через слой зернистого материала (кварцевого песка, дробленого антрацита, керамзита и др.), загруженного в фильтр.

Классификация фильтров по ряду основных признаков :

скорость фильтрации:

Медленные (0,1 - 0,3 м/ч);

Скорые (5 - 12 м/ч);

Сверхскоростные (36 - 100 м/ч);

давление, под которым они работают:

Открытые или безнапорные;

Напорные;

количество фильтрующих слоев:

Однослойные;

Двухслойные;

Многослойные.

Наиболее эффективны и экономичны многослойные фильтры, в которых для увеличения грязеемкости и эффективности фильтрации загрузку составляют из материалов с различной плотностью и размером частиц: сверху слоя - крупные легкие частицы, внизу - мелкие тяжелые. При нисходящем направлении фильтрования крупные загрязнения задерживаются в верхнем слое загрузки, а оставшиеся мелкие - в нижнем. Таким образом, работает весь объем загрузки. Осветительные фильтры эффективны при задержании частиц размером > 10 мкм.

Вода, содержащая взвешенные частицы, двигаясь через зернистую загрузку, задерживающую взвешенные частицы, осветляется. Эффективность процесса зависит от физика - химических свойств примесей, фильтрующей загрузки и гидродинамических факторов. В толщине загрузки происходит накапливание загрязнений, уменьшается свободный объем пор и возрастает гидравлическое сопротивление загрузки, что приводит к росту потерь напора в загрузке.

В общем виде, процесс фильтрации можно условно разбить на несколько стадий: перенос частиц из потока воды на поверхность фильтрующего материала; закрепление частиц на зернах и в щелях между ними; отрыв закрепленных частиц с переходом их обратно в поток воды.

Извлечение примесей из воды и закрепление их на зернах загрузки происходит под действием сил адгезии. Осадок, формирующийся на частицах загрузки, имеет непрочную структуру, которая под влиянием гидродинамических сил может разрушатся. Некоторая часть ранее прилипших частиц отрывается от зерен загрузки в виде мелких хлопьев и переносится в последующие слои загрузки (суффозия), где вновь задерживается в поровых каналах. Таким образом, процесс осветления воды нужно рассматривать как суммарный результат процесса адгезии и суффозии. Осветление в каждом элементарном слое загрузки происходит до тех пор, пока интенсивность прилипания частиц превышает интенсивность отрыва.

По мере насыщения верхних слоев загрузки процесс фильтрации переходит на нижерасположенные, зона фильтрации как бы сходит по направлению потока от области, где фильтрующий материал уже насыщен загрязнением и преобладает процесс суффозии к области свежей загрузки. Затем наступает момент, когда весь слой загрузки фильтра оказывается насыщенным загрязнениями воды и требуемая степень осветвления воды не обеспечивается. Концентрация взвеси на выходе загрузки начинает возрастать.

Время, в течение которого достигается осветление воды до заданной степени, называется временем защитного действия загрузки. При его достижении предельной потери напора осветительный фильтр необходимо перевести в режим взрыхляющей промывки, когда загрузка промывается обратным потоком воды, а загрязнения сбрасываются в дренаж.

Возможность задержания фильтром грубой взвеси зависит, в основном, от ее массы; тонкой взвеси и коллоидных частиц - от поверхностных сил. Важное значение имеет заряд взвешенных частиц, так как коллоидные частицы одноименного заряда не могут объединяться в конгломераты, укрупнятся и оседать: заряд препятствует их сближению. Преодолевается это «отчуждение» частиц искусственным коагулированием. Как правило, коагулирование (иногда, дополнительно, флокулирование) производится в отстойниках - осветлителях. Часто этот процесс совмещается с умягчением воды известкованием, или сода - известкованием, или едконатровым умягчением.

В обычных осветительных фильтрах чаще всего наблюдается пленочное фильтрование. Объемное фильтрование организуют в двухслойных фильтрах и в так называемых контактных осветлителях. В фильтр засыпают нижний слой кварцевого песка с размером 0.65 - 0.75 мм и верхний слой антрацита с размером зерен 1,0 - 1.25 мм. На верхней поверхности слоя крупных зерен антрацита пленка не образуется. Взвешенные вещества, прошедшие слой антрацита, задерживаются нижнем слоем песка.

При взрыхляющей промывке фильтра слои песка и антрацита не перемешиваются, так как плотность антрацита вдвое меньше плотности кварцевого песка.

6 . Оп ишите процесс умягчение в оды по методу катионного обмена

По теории электролитической диссоциации молекулы некоторых веществ находящихся в водном растворе распадаются на положительно и отрицательно заряженные ионы - катионы и анионы.

При прохождении такого раствора через фильтр, содержащий трудно растворимый материал (катионит), способный к поглощению катионов раствора, в том числе Са и Mg, и выделяющий вместо них из своего состава катионы Na или Н, происходит водоумягчение. Вода почти полностью освобождается от Са и Mg, и ее жесткость понижается до 0,1°

Na - ка тионирование. При этом способе растворенные в воде соли кальция и магния при фильтрации через катионитовый материал обменивают Са и Mg на Na; в итоге получаются только натриевые соли, обладающие большой растворимостью. Формула катионитового материала условно обозначается буквой R.

Катионитовыми материалами являются: глауконит, сульфоуголь и синтетические смолы. Наибольшим распространением в настоящее время пользуется сульфоуголь, который получается после обработки бурого или каменного угля дымящейся серной кислоты.

Емкостью катионитового материала называется предел его обменной способности, после чего в результате израсходования катионов Na их требуется восстанавливать путем регенерации.

Емкость измеряется тонна - градусами (т-град) накипеобразователей, считая на 1 м 3 катионового материала. Тонна - градусы получаются в результате перемножения расхода очищаемой воды, выраженного в тоннах, на жесткость этой воды в градусах жесткости.

Регенерация производится 5 - 10%-ным раствором поваренной соли, пропускаемым через катионитовый материал.

Характеристикой особенностью Na - катионирования является отсутствие солей, выпадающих в осадок. Анионы солей жесткости целиком направляется в котел. Это обстоятельство вызывает необходимость повышения количества продувочной воды. Умягчение воды при Na - катионировании получается достаточно глубокое, жесткость питательной воды может, доводится до 0° (практически 0,05-01°), щелочность же не отличается от карбонатной жесткости исходной воды.

К недостаткам Na - катионирования следует отнести получение повышенной щелочности в тех случаях, когда имеется значительное количество солей временной жесткости в исходной воде.

Ограничеватся одним Na - катионированием возможно при карбонатной жесткости воды, не превышающей 3-6°. В противном случае приходится значительно увеличивать количество продувочной воды, что будет создавать уже большие тепловые потери. Обычно количество продувочной воды не превышает 5-10% от общего ее расхода, идущего на питание котла.

Метод катионирования требует весьма простого обслуживание и доступен обычному персоналу котельной без дополнительного привлечения химика.

Конструкция катионитового фильтра

Н - Na -к атионирование . Если катионитовый фильтр, наполненный сульфоуглем, регенерировать не раствором поваренной соли, а раствором серной кислоты, то обмен будет происходить между катионами Ca и Mg, находящимися в очищаемой воде, и катионами Н сульфоугля.

Вода, подготовленная таким образом, также имея ничтожно малую жесткость, одновременно получает кислую и таким образом, непригодна для питания паровых котлов, причем кислотность воды равна некарбонатной жесткости воды.

Комбинируя совместно Na и Н - катионитовое водоумягчение, можно получить хорошие результаты. Жесткость воды, приготовленной Н-Na - катионитовым способом, не превышает 0,1° при щелочности 4-5°.

7 . Опишите прин ципиальные схемы водоподготовки

Осуществление необходимых изменений в составе обрабатываемой воды возможно по различным технологическим схемам, то выбор одной из них делают на основе сравнительных техника - экономических расчетов по намеченным вариантам схем.

В результате химической обработки природных вод, осуществляемой на водоподготовительных установках, могут происходить следующие основные изменения их состава: 1) осветление воды; 2) умягчение воды; 3) снижение щелочности воды; 4) уменьшение солесодержания воды; 5) полное обессоливание воды; 6) дегазация воды. Схемы обработки воды, необходимые для осуществления

перечисленных изменений ее состава, могут включать различные процессы, которые сводятся к следующим трем основным группам: 1) методы осаждения; 2) механическое фильтрование воды; 3) ионообменное фильтрование воды.

Применение технологических схем водоподготовительных установок предусматривают обычно комбинирование различных методов обработки воды.

На рисунки представлены возможные схемы комбинированных водоподготовительных установок путем применения указанных трех категорий процессов обработки воды. В этих схемах даны только основные аппараты. Без вспомогательного оборудования, а также не указаны фильтры второй и третий ступени.

Схема водоподготовительных установок

1-сырая вода; 2-осветитель; 3-механический фильтр; 4-промежуточный бак; 5-насос; 6-дозатор коагулянта; 7-Nа - катионитный фильтр; 8- Н - катионитный фильтр; 9 - декарбонизатор; 10 - ОН - анионитный фильтр; 11 - обработанная вода.

Ионообменное фильтрование является обязательной конечной стадией обработки воды при всех возможных вариантах схем и осуществляется в виде Na - катионирования, Н-Na-катионирования и Н-ОН - ионирования воды. Осветлитель 2 предусматривает два основных варианта его использования: 1) осветление воды, когда в нем осуществляются процессы коагуляции и отстаивания воды и 2) умягчение воды, когда помимо коагуляции, в нем проводится известкование, а также одновременно с известкованием магнезиальное обескремнивание воды.

В зависимости от характеристики природных вод по содержанию в них взвешенных веществ возможны три группы технологических схем их обработки:

1) Подземные артезианские воды (на рис. обозначены 1а), в которых практически обычно отсутствуют взвешенные вещества, не требуют их осветления и поэтому обработка таких вод может ограничеватся только ионообменным фильтрованием по одной из трех схем в зависимости от предъявляемых требований к обработанной воде: а) Na - катионирование, если требуется только умягчение воды; б) Н-Na - катионирование, если требуется, помимо умягчения, снижение щелочности или уменьшение солесодержание воды; в) Н-ОН - ионирование, если требуется глубокое обессоливание воды.

2) поверхностные воды с незначительным содержанием взвешенных веществ, (на рис. они обозначены 1б), могут обрабатываться по так называемым прямоточным напорным схемам, в которых коагуляция и осветление в механических фильтрах комбинируют с одной из схем ионообменного фильтрования.

3) поверхностные воды с относительно большим количеством взвешенных веществ (на рис. обозначены 1в), освобождаются от них в осветление, после чего подвергаются механическому фильтрованию и далее комбинируются с одной из схем ионообменного фильтрования. При этом часто. В целях разгрузки ионообменной части водоподготовительной установки, одновременно с коагуляцией осуществляют в осветлителе частичное умягчение воды и снижение ее солесодержание путем известкования и магнезиального обескремнивания. Такие комбинированные схемы особенно целесообразны при обработки сильно минерализованных вод, поскольку даже при частичном их обессоливании методом ионного обмена требуются большие

Решение :

Определяем межпромывочных период фильтра, ч

где: h 0 - высота фильтрующего слоя, 1,2 м

Гр - грязеемкость фильтрующего материала, 3,5 кг/м 3 .

Значение Гр может изменятся в широких пределах в зависимости от характера взвешенных веществ, их фракционного состава, фильтрующего материала и др. При расчетах можно принимать Гр= 3? 4 кг/м 3 , в среднем 3,5 кг/м 3 ,

U p - скорость фильтрования, 4,1 м/ч,

С в - концентрация, взвешенных веществ, 7 мг/л,

Количество промывок фильтров в сутки определяем по формуле:

где: Т 0 - межпромывочный период, 146,34 ч,

t 0 - время простоя фильтра на промывке, обычно 0,3 - 0,5 ч,

Определим необходимую площадь фильтрования:

где: U-скорость фильтрования, 4,1 м/ч,

Q - Производительность, 15 м 3 /ч,

В соответствии с правилами и нормами проектирования водоподготовительных установок количество фильтров должно быть не менее трех, тогда площадь одного фильтра составит:

где: m - количество фильтров.

По найденной площади одного фильтра находим требуемый диаметр фильтра по таблице: диаметр d = 1500 мм, площади фильтрования f = 1,72 м 2 .

Уточним количество фильтров:

Если количество фильтров меньше межпромывочного периода m 0 ? T 0 +t 0 (в нашем примере 2

В расчет фильтра входит определение расхода воды на собственные нужды, т.е. на промывку фильтра и на отмывку фильтра после промывки.

Расход воды на промывку фильтра и взрыхление определяется по формуле:

где: i- интенсивность взрыхления, л/(с * м 2); обычно i = 12 л/(с * м 2);

t - время промывки, мин. t = 15 мин.

Определяем средний расход воды на промывку работающих фильтров по формуле:

Определим расход на спуск в дренаж первого фильтра со скоростью 4 м/ч в течение 10 минут перед включением в работу:

Средний расход воды на отмывку работающих фильтров:

Потребное количество воды для фильтровальной установки с учетом расхода на собственные нужды:

Q п = g ср + g ср.отм + Q

Q п = 0,9 + 0,018 + 15 = 15,9 м 3 /ч

Литература

1. «Водоподготовка». В.Ф. Вихрев и М.С. Шкроб. Москва 1973 год.

2. «Справочник по водоподготовке котельных установок». О.В. Лифшиц. Москва 1976

3. «Водоподготовка». Б.Н. Фрог, А.П. Левченко. Москва 1996 год.

4. «Водоподготовка». С.М. Гурвич. Москва 1961 год.

Подобные документы

    Устройство и принцип работы рециркуляционного насоса, технологическая схема работы деаэрационно-питательной установки и сепаратора непрерывной продувки. Тепловой расчет котла, гидравлический расчет водовода технической воды, системы умягчения воды.

    дипломная работа, добавлен 22.09.2011

    Выбор и обоснование принятой схемы и состава сооружений станции водоподготовки. Расчет изменения качества обработки воды. Проектирование системы оборотного охлаждающего водоснабжения. Расчет реагентного хозяйства для известкования и коагуляции воды.

    курсовая работа, добавлен 03.12.2014

    Описание технологической схемы водоподготовки и приготовления электролита. Себестоимость изготовления емкости с перфорированной решёткой, аппарата с мешалкой. Назначение и принцип работы ионитового фильтра. Расчет фланцевых соединений для патрубков.

    дипломная работа, добавлен 13.06.2015

    Методы улучшения качества воды в зависимости от загрязнения. Современные бытовые и промышленные ионообменные фильтры водоподготовки. Ионитовые противоточные фильтры для умягчения и обессоливания воды. Противоточная регенерация ионообменных смол.

    реферат, добавлен 30.04.2011

    Оценка качества воды в источнике. Обоснование принципиальной технологической схемы процесса очистки воды. Технологические и гидравлические расчеты сооружений проектируемой станции водоподготовки. Пути обеззараживания воды. Зоны санитарной охраны.

    курсовая работа, добавлен 02.10.2012

    Средства автоматики управления котельных и системы водоподготовки. Модернизация системы подпиточных насосов котельной. Принцип действия частотного преобразователя TOSVERT VF-S11 на насосных станциях. Программирование с помощью LOGO! SoftComfort.

    курсовая работа, добавлен 19.06.2012

    Методы обеззараживания воды в технологии водоподготовки. Электролизные установки для обеззараживания воды. Преимущества и технология метода озонирования воды. Обеззараживание воды бактерицидными лучами и конструктивная схема бактерицидной установки.

    реферат, добавлен 09.03.2011

    Котельная, основное оборудование, принцип работы. Гидравлический расчет тепловых сетей. Определение расходов тепловой энергии. Построение повышенного графика регулирования отпуска теплоты. Процесс умягчения питательной воды, взрыхления и регенерации.

    дипломная работа, добавлен 15.02.2017

    Система водоснабжения и водоотведения на муниципальном предприятии, характеристика его очистных сооружений. Технология водоподготовки и эффективность очистки сточных вод, контроля качества очищаемой воды. Группы микроорганизмов активного ила и биоплёнки.

    отчет по практике, добавлен 13.01.2012

    Классификация примесей, содержащихся в воде для заполнения контура паротурбинной установки. Показатели качества воды. Методы удаления механических, коллоидно-дисперсных примесей. Умягчение воды способом катионного обмена. Термическая деаэрация воды.

На современных водопроводных станциях применяется комплексная многоступенчатая технология очистки воды , разработанная еще в ХIX веке. С того времени данная технология претерпевала различные усовершенствования и до нас дошла в виде ныне существующих коммунальных водопроводов с классической схемой водоподготовки, использующих все те же три основных этапа.

Основные этапы водоподготовки

  1. Механическая очистка воды. Это подготовительный этап водоочистки, направленный на удаление из воды крупных (видимых) загрязняющих частиц - песка, ржавчины, планктона, ила и других тяжелых взвесей. Осуществляется перед подачей воды на главные очистные сооружения с помощью решеток с ячеей различного диаметра и вращающихся сеток.
  2. Химическая очистка воды. Производится с целью приведения качества воды к нормативным показателям. Для этого применяются различные технологические приемы: осветление, коагуляция, отстаивание, фильтрация, обеззараживание, деминерализация, умягчение.

Осветление требуется в основном для поверхностных вод. Проводится на начальном этапе очистки питьевой воды в камере реакции и заключается в добавлении к объему обрабатываемой воды хлорсодержащего препарата и коагулянта. Хлор способствует разрушению органических веществ, большей частью представленных гуминовыми и фульвокислотами, присущих именно поверхностным водам и придающих им характерную зеленовато-коричневую окраску.

Коагуляция направлена на очищение воды от взвесей и коллоидных примесей, невидимых глазу. Коагулянты, в роли которых выступают соли алюминия, помогают мельчайшим частичкам органики (планктон, микроорганизмы, крупные белковые молекулы), находящимся во взвешенном состоянии, склеиваться между собой и превращают их в тяжелые хлопья, которые затем выпадают в осадок. Для усиления хлопьеобразования могут добавляться флокулянты - химические вещества различных торговых марок.

Отстаивание воды происходит в резервуарах с медленным потоком и переливным механизмом, где нижний слой жидкости движется медленнее, чем верхний. При этом происходит замедление общей скорости движения воды, и создаются условия для выпадения в осадок тяжелых загрязняющих частиц.

Фильтрация на угольных фильтрах или углевание, помогает избавиться от 95% находящихся в воде примесей как химического, так и биологического свойства. Ранее вода фильтровалась на картриджных фильтрах с прессованными активированными углями. Но этот метод достаточно трудоемкий и требует частой и дорогостоящей регенерации фильтрующего материала. На современном этапе перспективным является применение гранулированных (ГАУ) или порошкообразных (ПАУ) активированных углей, которые всыпаются в воду в блоке углевания, и перемешиваются с обрабатываемой водой. Исследования показали, что такой метод значительно эффективней, чем фильтрование через блочные фильтры, и к тому же менее дорогостоящий. ПАУ помогают устранить загрязнение химическими соединениями, тяжелыми металлами, органикой и, что немаловажно, поверхностно-активными веществами. Фильтрация с помощью активированных углей технологически доступна на водопроводной станции любого типа.

Обеззараживание применяется на всех без исключения типах водопроводов для устранения эпидемической опасности питьевой воды. В наше время способы обеззараживания предоставляют большой выбор различных методов и дезинфицирующих препаратов, но одной из составляющих неизменно является хлор, благодаря своему свойству сохранять активность в разводящей сети и дезинфицировать водопроводные трубы.

Деминерализация в промышленных масштабах предполагает удаление из воды избыточного количества железа и марганца (обезжелезивание и деманганация соответственно).

Повышенное содержание железа меняет органолептические свойства воды, приводит к окрашиванию ее в желто-бурый цвет, придает неприятный «металлический» привкус. Железо выпадает в осадок в трубах, создавая условия для их дальнейшего загрязнения биологическими агентами, окрашивает белье при стирке, негативно влияет на сантехническое оборудование. Кроме того, высокие концентрации железа и марганца могут вызывать заболевания желудочно-кишечного тракта, почек и крови. Сверхнормативное количество железа, как правило, сопровождается высоким содержанием марганца и сероводорода.

На коммунальных водопроводах обезжелезивание проводится методом аэрации. При этом двухвалентное железо окисляется до трехвалентного и выпадает в осадок в виде хлопьев ржавчины. Далее ее можно устранить с помощью фильтров с различными загрузками.

Аэрация проводится двумя способами:

  • Напорная аэрация - в контактную камеру по центру подается воздушная смесь по трубе, доходящей до половины камеры. Затем происходит барботирование толщи воды пузырьками воздушной смеси, которая и окисляет металлические примеси и газы. Аэрационная колонна заполняется водой не полностью, над поверхностью находится воздушная подушка. Ее задача заключается в смягчении гидроударов и увеличении площади аэрации.
  • Безнапорная аэрация - проводится с помощью душевальных установок. В специальных камерах вода распыляется с помощью водяных эжекторов, что значительно увеличивает контактную площадь воды с воздухом.

Помимо этого, железо интенсивно окисляется при обработке воды хлором и озоном.

Марганец удаляется из воды фильтрованием через модифицированные загрузки либо добавлением окислителей, например, перманганата калия.

Умягчение воды проводится для устранения солей жесткости - карбонатов кальция и магния. Для этого используются фильтры с загрузкой кислыми или щелочными катионитами или анионитами, замещающими ионы кальция и магния на нейтральный натрий. Это достаточно дорогостоящий метод, потому используется чаще всего на локальных станциях водоочистки.

Подача воды в распределительную сеть.

После прохождения полного комплекса очистных сооружений на водопроводной станции вода становится питьевой. Затем она подается потребителю системой водопроводных труб, состояние которых в большинстве случаев оставляет желать значительно лучшего. Потому все чаще и чаще звучит вопрос о необходимости доочистки водопроводной питьевой воды и не только приведении ее к нормативным требованиям, но и придания полезных для здоровья качеств.