Турбонасосный агрегат жидкостного ракетного двигателя. Экспериментальная отработка насосов и турбины ТНА

Одной из самых сложных машиностроительных конструкций является газовая турбина.

Развитие газовых турбин определяется, в первую очередь, развитием авиационных газотурбинных двигателей для военных целей. При этом главным является повышение удельной тяги и снижение удельного веса. Проблемы экономики и ресурса для таких двигателей являются вторичными.

Одной из самых нагруженных деталью, ограничивающей межремонтный ресурс, являются неохлаждаемые лопатки турбины, изготавливаемые из деформируемого никелевого сплава ЭИ893. Лопатки из этого сплава из-за ограничений по длительной прочности имеют ресурс 48000 часов. В настоящее время при производстве лопаток турбин существует достаточно высокая конкуренция, поэтому вопросы снижения стоимости и повышения ресурса лопаток являются очень актуальными.

В данном дипломном проекте рассмотрена сравнительно новая для отечественной промышленности технология производства неохлаждаемых лопаток турбин большой длины (более 200 мм). В качестве заготовки лопатки применяется отливка из материала ЦНК-7П без припуска на механическую обработку пера, подвергнутая горячему изостатическому прессованию. Для снижения трудоемкости изготовления лопаток используется глубинное шлифование замка, а для повышения сопротивления усталости замок лопатки после шлифования подвергается гидродробеструйному упрочнению.

В данном дипломном проекте рассмотрена технология производства рабочей лопатки турбины. Поскольку данный техпроцесс универсален для лопаток самых разных размеров, он может применятся как для изготовления лопаток турбинынизкого давления ГТД (либо ГТУ), так и турбины ТНА ЖРД. В этой работе рассмотрена лопатка для ТНА ЖРД РД-180. Однако в силу универсальности материала лопаток и техпроцесса мы уделяем повышенное внимание также и ресурсу изделия. Подробно рассмотрен процесс глубинного шлифования для деталей из жаропрочных сплавов, какой является турбинная лопатка, и описаны технология производства и свойства используемых в глубинном шлифовании алмазных роликов для правки шлифовальных кругов. В проекте рассчитано на точность и силу зажима приспособление "щучья пасть", широко применяемое при операциях глубинного шлифования в процессе производства лопатки. В исследовательской части рассмотрен процесс повышения усталостной прочности путем обдувки дробью в жидкой среде замка лопатки (гидродробеструйное упрочнение), описаны методики определения остаточных напряжений и проведения усталостных испытаний лопатки. Также в работе описана система автоматизации проектирования CATIA и создание в данной системе модели детали и конструкторской документации. В части по охране труда разработаны меры для повышения безопасности производства и охраны окружающей среды. Рассчитана также эффективность внедрения данного техпроцесса производства лопатки по отношению к предыдущему.

Краткое описание ТНА РД-180

*Описание дано без газогенератора.

Турбонасосный агрегат выполнен по одновальной схеме и состоит из осевой одноступенчатой реактивной турбины, одноступенчатого шнекоцентробежного насоса окислителя и двухступенчатого шнекоцентробежного насоса горючего (вторая ступень используется для подачи части горючего в газогенераторы).

На основном валу с турбиной находится насос окислителя, соосно с которым на другом валу расположены две ступени насоса горючего. Валы насосов окислителя и горючего соединены зубчатой рессорой для разгрузки вала от температурных деформаций, возникающих вследствии большой разницы температур рабрчих тел насосов, а также для предотвращения замерзания горючго.

Для защиты радиально-упорных подшипников валов от чрезмерных нагрузок применены эффективные авторазгрузочные устройства.

Турбина - осевая одноступенчатая реактивная. Для предотвращения возгорания из-за поломок элементов конструкции или трения вращающихся деталей о неподвижные (вследствие выборки зазоров от деформаций или наклепа на сопрягаемых поверхностях от вибрации) зазор между лопатками соплового аппарата и ротора сделан относительно большим, а кромок лопаток - относительно толстыми.

Чтобы исключить возгорание и разрушение деталей газового тракта турбины, в конструкции применены никелевые сплавы, включая жаропрочные для горячих газовых магистралей. Статор и выхлопной тракт турбиныпринудительно охлаждаются холодным кислородом. В местах малых радиальных или торцевых зазоров используются разного рода теплозащитные покрытия (никелевые для лопаток ротора и статора, металлокерамического для ротора), а также серебряные или бронзовые элементы, исключающие возгорание даже при возможном касании вращающихся и неподвижных деталей турбонасосного агрегата.

Для уменьшения размеров и массы посторонних частиц, могущих привести к возгоранию в газовом тракте турбины, на входе в двигатель установлен фильтр с ячейкой 0.16*0.16 мм.

Насос окислителя. Высокое давление жидкого кислорода и, как следствие, повышенная опасность возгорания обусловили конструктивные особенности насоса окислителя.

Так, вместо плавающих уплотнительных колец на буртах крыльчатки (обычно используемых на менее мощных ТНА) применены неподвижные щелевые уплотнения с серебряной накладкой, поскольку процесс "всплывания" колец сопровождается трением в местах контакта крыльчатки с корпусом и может привести к возгоранию насоса.

Шнек, крыльчатка и торовый отвод нуждаются в особенно тщательном профилировании, а ротор в целом - в особых мерах по обеспечению динамической сбалансированности в процессе работы. В противном случае вследствие больших пульсаций и вибраций происходят разрушения трубопроводов, возгорания в стыках вследствие взаимного перемещения деталей, трения и наклепа.

Для предотвращения возгорания из-за поломок элементов конструкции (шнека, крыльчатки и лопаток направляющего аппарата) в условиях динамического нагружения с последующим возгоранием из-за затирания обломков использованы такие средства, как повышение конструктивного совершенства и прочности за счет геометрии, материалов и чистоты отработки, а также введение новых технологий: изостатическое прессирования литых заготовок, применение гранульной технологии и другие виды.

Бустерный насос окислителя состоит из высоконапорного шнека и двухступенчатой газовой турбины, привод которой осуществляется окислительным газом, отбираемом после основной турбиныс последующим перепуском его на вход в основной насос.

Бустерный насос горючего состоит из высоконапорного шнека и одноступенчатой гидравлической турбины, работающей на керосине, отбираемом после основного насоса. Конструктивно бустерный насос горючего аналогичен бустерному насосу окислителя со следующими отличиями:

· одноступенчатая гидротурбина работает на горючем, отбираемым с выхода насоса горючего основного ТНА;

· отвод горючего высокого давления для разгрузки шнека от действий осевых производится из входного коллектора гидротурбины БНАГ.

Таблица 1: ТТХ ТНА

Параметр

Значение

Окислитель

Давление на выходе из насоса

Расход компонента через насос

КПД насоса

Мощность на валу

Скорость вращения вала

Мощность турбины

Давление на входе в турбину

Количество ступеней

Степень понижения давления на турбине

Температура на входе в турбину

КПД турбины

1) Изучение схемы и принципа работы жидкостного ракетного двигателя (ЖРД).

2) Определение изменение параметров рабочего тела вдоль тракта камеры ЖРД.

  1. ОБЩИЕ СВЕДЕНИЯ О ЖРД

2.1. Состав ЖРД

Реактивным двигателем называется техническое устройство, создающее тягу в результате истечения из него рабочего тела. Реактивные двигатели обеспечивают ускорение перемещающихся аппаратов различных типов.

Ракетный двигатель – это реактивный двигатель, использующий для работы только вещества и источники энергии, имеющиеся в запасе на борту перемещающегося аппарата.

Жидкостной ракетный двигатель (ЖРД) – это ракетный двигатель, использующий для работы топливо (первичный источник энергии и рабочее тело), находящееся в жидком агрегатном состоянии.

ЖРД в общем случае состоит из:

2- турбонасосных агрегатов (ТНА);

3- газогенераторов;

4- трубопроводов;

5- агрегатов автоматики;

6- вспомогательных устройств

Один или несколько ЖРД, в совокупности с пневмогидравлической системой (ПГС) подачи топлива в камеры двигателя и вспомогательными агрегатами ступени ракеты, составляют жидкостную ракетную двигательную установку (ЖРДУ).

В качестве жидкого ракетного топлива (ЖРТ) используется вещество или несколько веществ (окислитель, горючее), которые способны в результате экзотермических химических реакций образовывать высокотемпературные продукты сгорания (разложения). Эти продукты являются рабочим телом двигателя.

Каждая камера ЖРД состоит из камеры сгорания и сопла. В камере ЖРД первичная химическая энергия жидкого топлива преобразуется в конечную кинетическую энергию газообразного рабочего тела, в результате истечения которого создается реактивная сила камеры.

Отдельный турбонасосный агрегат ЖРД состоит из насосов и приводящей их в действия турбины. ТНА обеспечивает подачу компонентов жидкого топлива в камеры и газогенераторы ЖРД.

Газогенератор ЖРД является агрегатом, в котором основное или вспомогательное топливо преобразуется в продукты газогенерации, используемые в качестве рабочего тела турбины и рабочих тел системы наддува баков с компонентами ЖРТ.

Система автоматики ЖРД представляет собой совокупность устройств (клапанов, регуляторов, датчиков и т.п.) различных типов: электрического, механического, гидравлического, пневматического, пиротехнического и др. Агрегаты автоматики обеспечивают запуск, управление, регулирование и останов ЖРД.

Параметры ЖРД

Основными тяговыми параметрами ЖРД являются:


Реактивная сила ЖРД - R - результирующая газо- и гидродинамических сил, действующих на внутренние поверхности ракетного двигателя при истечении из него вещества;

Тяга ЖРД - Р - равнодействующая реактивной силы ЖРД (R) и всех сил давления окружающей среды, которые действуют на внешние поверхности двигателя за исключением сил внешнего аэродинамического сопротивления;

Импульс тяги ЖРД - I - интеграл от тяги ЖРД по времени его работы;

Удельный импульс тяги ЖРД - I у - отношение тяги (Р) к массовому расходу топлива () ЖРД.

Основными параметрами, которые характеризуют процессы, протекающие в камере ЖРД, служат давление (р), температура (Т) и скорость потока (W) продуктов сгорания (разложения) жидкого ракетного топлива. При этом особо выделяются значения параметров на входе в сопло (индекс сечения «с»), а также в критическом («*») и выходном («а») сечениях сопла.

Расчет значений параметров в различных сечениях тракта сопла ЖРД и определение тяговых параметров двигателя проводится по соответствующим уравнениям термогазодинамики. Приближенная методика подобного расчета рассмотрена в 4 разделе данного пособия.

  1. СХЕМА И ПРИНЦИП РАБОТЫ ЖРД «РД-214»

3.1. Общая характеристика ЖРД «РД-214»

Жидкостной ракетный двигатель «РД-214» применяется в отечественной практике с 1957 года. С 1962 года он устанавливается на 1-ой ступени многоступенчатых ракетах-носителях «Космос», с помощью которых на околоземные орбиты выведены многие спутники серий «Космос» и «Интеркомос».

ЖРД «РД-214» имеет насосную систему подачи топлива. Двигатель работает на высококипящем азотно-кислотном окислителе (растворе окислов азота в азотной кислоте) и углеводородном горючем (продуктах переработки керосина). Для газогенератора применяется специальный компонент – жидкая перекись водорода.

Основные параметры двигателя имеют следующие значения:

Тяга в пустоте Р п = 726 кН;

Удельный импульс тяги в пустоте I уп = 2590 Н×с/кг;

Давление газа в камере сгорания р к = 4,4 МПа;

Степень расширения газа в сопле e = 64

ЖРД «РД-214», (рис. 1) состоит из:

Четырех камер (поз. 6);

Одного турбонасосного агрегата (ТНА) (поз. 1, 2, 3, 4);

Газогенератора (поз. 5);

Трубопровода;

Агрегатов автоматики (поз. 7, 8)

ТНА двигателя состоит из насоса окислителя (поз. 2), насоса горючего (поз. 3), насоса перекиси водорода (поз. 4) и турбины (поз. 1). Ротора (вращающиеся части) насосов и турбины связаны одним валом.

Агрегаты и узлы, обеспечивающие подачу компонентов в камеру двигателя, газогенератор и турбину, объединяются в три отдельные системы – магистрали:

Систему подачи окислителя

Систему подачи горючего

Систему парогазогенерации перекиси водорода.


Рис.1. Схема жидкостного ракетного двигателя

1 – турбина; 2 – насос окислителя; 3 – насос горючего;

4 – насос перекиси водорода; 5 – газогенератор (реактор);

6 – камера двигателя; 7, 8 – элементы автоматики.

3.2. Характеристика агрегатов ЖРД «РД-214»

3.2.1. Камера ЖРД

Четыре камеры ЖРД связаны в единый блок по двум сечениям с помощью болтов.

Каждая камера ЖРД (поз. 6) состоит из смесительной головки и корпуса. Смесительная головка включает верхнее, среднее и нижнее (огневое) днища. Между верхним и средним днищами образована полость для окислителя, между средним и огневым – полость для горючего. Каждая из полостей с помощью соответствующих форсунок связана с внутренним объемом корпуса двигателя.

В процессе работы ЖРД через смесительную головку и ее форсунки осуществляется подача, распыл и смешение жидких компонентов топлива.

Корпус камеры ЖРД включает часть камеры сгорания и сопло. Сопло ЖРД сверхзвуковое, имеет сходящуюся и расходящуюся части.

Корпус камеры ЖРД двухстенный. Внутренняя (огневая) и наружная (силовая) стенки корпуса связаны между собой проставками. При этом, с помощью проставок, между стенками образованы каналы тракта жидкостного охлаждения корпуса. В качестве охладителя используется горючее.

Во время работы двигателя горючее подается в тракт охлаждения через специальные патрубки коллектора, расположенного на конечной части сопла. Пройдя тракт охлаждения, горючее поступает в соответствующую полость смесительной головки и через форсунки вводится в камеру сгорания. Одновременно через другую полость смесительной головки и соответствующие форсунки, в камеру сгорания поступает окислитель.

В объеме камеры сгорания происходит распыл, смешение и сгорание жидких компонентов топлива. В результате образуется высокотемпературное газообразное рабочее тело двигателя.

Затем в сверхзвуковом сопле осуществляется преобразование тепловой энергии рабочего тела в кинетическую энергию его струи, при истечении которой создается тяга ЖРД.

3.2.2. Газогенератор и турбонасосный агрегат

Газогенератор (рис. 1, поз. 5) является агрегатом, в котором жидкая перекись водорода в результате экзотермического разложения преобразуется в высокотемпературное парообразное рабочее тело турбины.

Турбонасосный агрегат обеспечивает напорную подачу жидких компонентов топлива в камеру и газогенератор двигателя.

ТНА состоит из (рис. 1):

Шнекоцентробежного насоса окислителя (поз. 2);

Шнекоцентробежного насоса горючего (поз. 3);

Центробежного насоса перекиси водорода (поз. 4);

Газовой турбины (поз. 1).

Каждый насос и турбина имеет неподвижный статор и вращающийся ротор. Роторы насосов и турбины имеют общий вал, состоящий из двух частей, которые связаны рессорой.

Турбина (поз. 1) служит приводом насосов. Основными элементами статора турбины являются корпус и сопловой аппарат, а ротора – вал и рабочее колесо с лопатками. В процессе работы, на турбину из газогенератора поступает перекисный парогаз. При прохождении парогаза через сопловой аппарат и лопатки рабочего колеса турбины, его тепловая энергия преобразуется в механическую энергию вращения колеса и вала ротора турбины. Отработанный парогаз собирается в выходном коллекторе корпуса турбины и сбрасывается в атмосферу через специальные отбросные сопла. При этом создается некоторая дополнительная тяга ЖРД.

Насосы окислителя (поз. 2) и горючего (поз. 3) шнекоцентробежного типа. Основными элементами каждого из насосов является корпус и ротор. Ротор имеет вал, шнек и центробежное колесо с лопатками. В процессе работы от турбины к насосу через общий вал подводится механическая энергия, обеспечивающая вращения ротора насоса. В результате воздействия лопаток шнека и центробежного колеса на прокачиваемую насосами жидкость (компонент топлива), механическая энергия вращения ротора насоса преобразуется в потенциальную энергию давления жидкости, что обеспечивает подачу компонента в камеру двигателя. Шнек перед центробежным колесом насоса устанавливается для предварительного повышения давления жидкости на входе в межлопаточные каналы рабочего колеса с целью предотвращения холодного вскипания жидкости (кавитации) и нарушения ее сплошности. Нарушения сплошности потока компонента может вызвать неустойчивость процесса сгорания топлива в камере двигателя, а, следовательно, и неустойчивость работы ЖРД в целом.

Для подачи в газогенератор перекиси водорода применяется центробежный насос (поз. 4). Сравнительно малый расход компонента создает условия бескавитационной работы центробежного насоса без установки перед ним шнекового преднасоса.

3.3. Принцип работы двигателя

Пуск, управление и остановка двигателя выполняется автоматически по электрическим командам с борта ракеты на соответствующие элементы автоматики.

Для начального воспламенения компонентов топлива используется специальное пусковое горючее, самовоспламеняющиеся с окислителем. Пусковое горючее первоначально заполняет небольшой участок трубопровода перед насосом горючего. В момент запуска ЖРД в камеру поступает пусковое горючее и окислитель, происходит их самовоспламенение и лишь затем в камеру начинают подаваться основные компоненты топлива.

В процессе работы двигателя окислитель последовательно проходит элементы и агрегаты магистрали (системы), включающей:

Разделительный клапан;

Насос окислителя;

Клапан окислителя;

Смесительную головку камеры двигателя.

Поток горючего протекает по магистрали, включающей:

Разделительные клапана;

Насос горючего;

Коллектор и тракт охлаждения камеры двигателя;

Смесительную головку камеры.

Перекись водорода и образующийся парогаз последовательно проходят элементы и агрегаты системы парогазогенерации, включающей:

Разделительный клапан;

Насос перекиси водорода;

Гидроредуктор;

Газогенератор;

Сопловой аппарат турбины;

Лопатки рабочего колеса турбины;

Коллектор турбины;

Отбросные сопла.

В результате непрерывной подачи турбонасосным агрегатом компонентов топлива в камеру двигателя, их сгорание с образованием высокотемпературного рабочего тела и истечения рабочего тела из камеры, создается тяга ЖРД.

Варьирование значения тяги двигателя в процессе его работы обеспечивается с помощью изменения расхода перекиси водорода, подаваемой в газогенератор. При этом изменяется мощность турбины и насосов, а, следовательно, и подача компонентов топлива в камеру двигателя.

Останов ЖРД производится в две ступени с помощью элементов автоматики. С основного режима двигатель сначала переводится на конечный режим работы с меньшей тягой и лишь затем выключается полностью.

  1. МЕТОДИКА ПРОВЕДЕНИЯ РАБОТЫ

4.1. Объем и порядок выполнения работы

В процессе выполнения работы последовательно выполняются следующие действия.

1) Изучается схема ЖРД «РД-214». Рассматривается назначение и состав ЖРД, конструкция агрегатов, принцип работы двигателя.

2) Производится измерение геометрических параметров сопла ЖРД. Находится диаметр входного («с»), критического («*») и выходного («а») сечений сопла (D с, D * , D а).

3) Рассчитывается значение параметров рабочего тела ЖРД во входном, критическом и выходном сечениях сопла ЖРД.

По результатам расчетов строится обобщенный график изменения температуры (Т), давления (р) и скорости (W) рабочего тела вдоль тракта сопла (L) ЖРД.

4) Определяются тяговые параметры ЖРД при расчетном режиме работы сопла ().

4.2. Исходные данные для расчета параметров ЖРД «РД-214»

Давление газа в камере (см. вариант)

Температура газов в камере

Газовая постоянная

Показатель изоэнтропы

Функция

Принимается, что процессы в камере протекают без потерь энергии. При этом коэффициенты потерь энергии в камере сгорания и сопле соответственно равны

Режим работы сопла расчетный (индекс «r »).

Посредством измерения определяются:

Диаметр критического сечения сопла ;

Диаметр выходного сечения сопла .

4.3. Последовательность расчета параметров ЖРД

А) Параметры в выходном сечении сопла («а») определяются в следующей последовательности.

1) Площадь выходного сечения сопла

2) Площадь критического сечения сопла

3) Геометрическая степень расширения газа

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каково значение ЖРД «РД-214»?

2. Перечислите основные системы изученного ЖРД.

3. Каково назначение камеры ЖРД, из каких частей она состоит?

4. Каково назначение ТНА, перечислите его основные агрегаты?

5. Каково назначение и состав системы парогазогенерации ЖРД «РД-214»?

6. Опишите последовательность прохождения рабочего тела турбины.

7. Перечислите основные тяговые параметры ЖРД; назовите их значения для ЖРД «РД-214».

ТНА подразделяются на одновальные и многовальные. В одновальных ТНА турбина и насосы располагаются на одном валу. Преимуществом ТНА, выполненных по такой схеме, является простота конструкции и малый вес. В качестве недостатка необходимо отметить, что только один из насосов (как правило, насос окислителя) работает при оптимальном числе оборотов. При этом насос горючего эксплуатируется при пониженных значениях КПД.

Различают следующие компоновочные схемы ТНА, рис.57.

При трехвальной схеме ТНА числа оборотов насосов и турбины независимы друг от друга и могут выбираться из условий оптимальности работы насосов. Однако, наличие редукторов, работающих в сложных условиях (высокие значения окружной скорости, сложность обеспечения эффективной системы смазки и охлаждения), в некоторых случаях сводит к минимуму выигрыш от повышения значений КПД насосов.

Одновальные


Трёхвальная


Компоновочные схемы ТНА

Наибольшее распространение в ЖРДУ получили одновальные схемы ТНА.

5.3. Устройство центробежного насоса

В ТНА ЖРД обычно в качестве основных применяются центро­бежные насосы. Основными достоинствами, определяющими преимущественное использование этих видов насосов в ЖРД, являются:

Обеспечение высоких давлений подачи и производительности при малых габаритах и массе;

Возможность работы на агрессивных и низкокипящих компо­нентах;

Возможность работы с большим числом оборотов и удобство использования турбины для их привода.

На рис.58 показана схема одноступенчатого центробежного насоса. Жидкость по входному патрубку 1 подается на вращающееся колесо (крыльчатку) 2. В колесе насоса жидкость движется по каналу, образованному стенками колеса и лопатками 3. Усилие, действующее со стороны лопаток колеса на жидкость, заставляет ее двигаться так, что запас энергии в единице массы жидкости увеличивается. При этом происходит прирост как потенциальной энергии (статического давления), так и кинетической энергии жидкости.

Рис.58

Схема центробежного насоса:

1 - входной патрубок; 2 - колесо насоса (крыльчатка); 3 - лопатки;

4 - диффузор; 5 - лопатки диффузора; 6 - сборник или улитка; 7 - переднее уплотнение;

8 - подшипник вала; 9 - уплотнение подшипника

На выходе из колеса жидкость поступает в диффузор 4, где уменьшается ее абсолютная скорость и до­полнительно возрастает давление. Простейший диффузор состоит из гладких дисков, составляющих его стенки, и называется безлопаточным. Лопаточный диффузор имеет неподвижные лопатки 5 (на рис. 58 пока­заны пунктиром), которые способствуют более быстрому гашению ско­рости потока. Пройдя диффузор, жидкость поступает в спиральный ка­нал (улитку) 6, назначение которого состоит в том, чтобы собирать жидкость, выходящую из колеса, а также уменьшать ее скорость. По нагнетающему патрубку жидкость подается в сеть.

Чтобы уменьшить перетекание жидкости из полости высокого дав­ления (диффузора, улитки) в область низкого давления, в насосе де­лаются уплотнения 7.

Рис.59

Схемы центробежных насосов:

а-с осевым входом; б- со спиральным входом;

в -с двухсторонним входом; г -многоступенчатый насос

Центробежные насосы выполняют с осевым, спиральным и двой­ным входом, одно-и многоступенчатые. Выбор осевого или спирального входа (рис.59, а,б) определяется в первую очередь условиями компо­новки ТНА и двигательной установки. Двойной вход (рис.59, в ) выпол­няют при больших расходах для уменьшения скорости на входе и тем самым для улучшения антикавитационных свойств насоса. Многоступен­чатые насосы (рис.59, г ) применяют при необходимости получения особенно больших напоров.

Обычно корпуса насосов выполняются литьем из высокопрочных алюминиевых сплавов, а в случае высоких давлений - из стали. Количество профилированных лопаток крыльчатки составляет не более 8, а их толщина лежит в диапазоне 2 ¸ 5 мм.

5.4. Крыльчатки насосов

Различают крыльчатки, открытого и закрытого типов, рис.60 (а, б).

Открытая крыльчатка используется в насосах с малым расходом и давлением компонента. Для крыльчатки такого типа характерны значительные потери, обусловленные перетеканием компонента из области повышенного давления (на выходе из насоса) в область пониженного (на входе в насос). Крыльчатка состоит из диска 1 и выполненных на нем лопаток 2.

В закрытых крыльчатках на торцевых поверхностях лопаток устанавливается крышка 3, которая может быть выполнена за единое целое с крыльчаткой. В крыльчатках такого типа потери на перетекание компонента значительно меньше, чем в открытых крыльчатках. Обычно крыльчатки изготавливают литьем. Число профилированных лопаток, как правило не превышает 8, а их толщина менее 5мм. Крыльчатки, представленные на рис.60, относятся к крыльчаткам с односторонним подводом компонента.

Для снижения расхода компонента через лопаточный канал крыльчатки (с целью исключения возникновения процесса кавитации) используются крыльчатки с двухсторонним подводом компонента, рис.61.

Рис.60

Односторонние крыльчатки:

а- открытого типа; б – закрытого типа

Рис.61

Двухсторонняя крыльчатка

8.5. Уплотнения крыльчаток

С целью снижения перетечек жидкости в крыльчатках насосов устанавливаются уплотнения следующих типов: щелевые, лабиринтные и плавающие, рис.62 а,б,в, соответственно.

Принцип работы щелевых уплотнений основан на обеспечении высокого гидравлического сопротивления кольцевой щели между графитовым вкладышем, установленным в корпусе насоса, и проточкой, выполненной во входном сечении диска. Конструкция данного уплотнения допускает до 15% перетечек от объема перекачиваемой жидкости, в то время как лабиринтное, рис.62 б, и плавающее (набор фторопластовых и алюминиевых шайб, установленных во входном сечении крыльчатки), рис.62 в, - до 10 % и 5 %, соответственно.

Рис.62

Уплотнения крыльчаток:

а – щелевое; б – лабиринтное; в - плавающее

5.5. Турбина ТНА

Одним из основных элементов ТНА является газовая турбина. В турбине потенциальная энергия продуктов сгорания из газогенератора или паров охладителя преобразуется в механическую работу турбины. Турбина предназначена для приведение во вращение насосов ТНА. Турбина состоит из соплового аппарата 1, рабочего колеса 2 с двумя рядами рабочих лопаток 3 и 4, направляющего аппарата 5 и корпуса турбины 6 с выходным патрубком 7, рис.75.

Первая ступень турбины представляет совокупность соплового аппарата 1 и лопаток рабочего колеса 3, вторая образована неподвижными лопатками направляющего аппарата 5 и вторым рядом рабочих лопаток 4.

Преобразование энтальпии газового потока в механическую энергию вращения вала осуществляется в два этапа: энтальпии газового потока – в кинетическую энергию струи (в сопловом аппарате); кинетической энергии струи – в механическую энергию вращения вала (на рабочем колесе).

Рис.75

Конструкция турбины ТНА

Валы турбонасосных агрегатов (ТНА) работают при высоких нагрузках и больших числах оборотов. Для об­легчения веса их делают полыми. Наибольшие знакопе­ременные напряжения в металле вала возникают на его наружной поверхности. При этом всякого вида резкие переходы, следы от режущего инструмента и другие де­фекты поверхности являются концентраторами напряже­ний. В этих местах при работе могут образоваться тре­щины, что приведет к поломке вала. Поэтому особое вни­мание уделяется чистоте отделки поверхности вала с вве­дением в некоторых случаях упрочняющих операций. От­делке подвергаются не только места под подшипники, уплотнения, посадки, но и все другие участки вала, не сопрягаемые с другими деталями.

Большие числа оборотов (10000-20000 об/мин и бо­лее) заставляют конструктора назначать очень жесткие допуски на соосность шеек и посадочных мест, точность расположения осевого отверстия, разностенность и дру­гие размеры. Малейшие геометрические погрешности приводят к неравномерному распредзелению вращающих­ся масс металла, что вызывает вибрации и тряску ТНА.

5.6. Требования, предъявляемые к газогенераторам

Величина тяги ЖРД, как известно, является линейной функцией секундного расхода топлива. Секундный расход топлива для каждого конкретного двигателя с насосной си­стемой подачи компонентов зависит от мощности, развиваемой турбиной. Мощность турбины полностью определяется секундным рас­ходом и параметрами рабочего тела на входе в турбину, т. е. на выходе из газогенератора. Поэтому газогенератор являет­ся устройством, задающим режим работы всей двигательной установки. Это обстоятельство и определяет особые требова­ния к данному звену системы топливоподачи (помимо общих требований, предъявляемых ко всем агрегатам ЖРД, вне зависимости от специфики их работы). Эти требования сводятся к следующему.

1. Высокая стабильность работы. Это значит, что газоге­нератор на всех режимах работы двигателя должен возмож­но точнее обеспечивать заданный секундный расход газа и при этом значения параметров газа (состав, давление, темпе­ратура и др.) не должны выходить за определенные (допу­стимые) пределы. Чем стабильнее работа газогенератора, тем меньшие нагрузки испытывают в полете системы управления работой двигателя, а это повышает надежность двигателя и точность стрельбы.

Особенно важна стабильность работы газогенератора для ракет с нерегулируемыми ЖРД и ракет, управление даль­ностью полета которых осуществляется только по скорости полета в конце активного участка траектории. В последнем случае отклонение координат конца активного участка траек­тории, вызванное отклонением тяги двигателя от расчетного значения, вследствие нестабильной работы газогенератора, целиком перейдет в отклонение точки падения ракеты от цели.

2. Простота управления рабочим процессом в широком диа­пазоне изменения его параметров. Это требование также об­условлено регулирующим воздействием газогенератора на двигатель и необходимостью изменения режима работы дви­гателя в процессе одного запуска (при регулировании тяги во время старта и в полете, при переходе с главной ступени тяги на конечную и т. д.).

3. Высокая работоспособность генераторного газа, об­условливающая либо минимальную затрату энергии (и соот­ветственно минимальный расход топлива) на привод ТНА, либо повышение мощности ТНА. Это требование выдвигает­ся в связи с тем, что удель­ный импульс двигателя определяется отношением тяги ко всему секундному расходу отбрасываемой массы. В понятие же «отбрасываемая масса» входят как продукты сгорания топли­ва в камере, так и отработанный после турбины газ. Для ЖРД, у которых этот газ выбрасывается в атмосферу и раз­вивает удельный импульс меньший, чем продукты сгорания топ­лива, истекающие из камеры двигателя, решающим условием повышения экономичности двигателя является уменьшение расхода топлива на привод ТНА. Для ЖРД с дожиганием ге­нераторного газа главное-увеличение мощности ТНА, так как это позволяет увеличить давление в камере и при задан­ном значении давления на срезе сопла повысить степень расширения отбрасываемых продук­тов сгорания, т. е. увеличить термический КПД камеры. Уменьшение расхода топлива на привод ТНА и увеличение мощности ТНА зависят от количества энергии, отдаваемой турбине одним килограммом рабочего тела. Эта энергия рав­на, как известно, произведению относительного эффективного КПД турбины на располагаемый адиабатический теплоперепад.

5.7. Классификация газогенераторов

Основу классификации газогенераторов составляет способ получения генераторного газа. В настоящее время распро­странены три способа газогенерации.

1. Разложение (с помощью катализаторов или без них) вещества, способного после внешнего инициирующего воздей­ствия перейти к дальнейшему устойчивому самопроизвольному рас­паду, сопровождающемуся выделением значительного коли­чества тепловой энергии и газообразных продуктов разложе­ния. Таким веществом может быть как компонент основного топлива двигателя, так и специальное средство газогенера­ции, запасенное только для этой цели на борту ракеты. Газо­генераторы, в которых реализуется этот процесс, называются однокомпонентными. В дальнейшем их различают главным образом по виду разлагаемого вещества (перекисеводородные, гидразиновые, на твердом топливе и т. п.).

2. Сжигание жидкого топлива, состоящего из двух ком­понентов. Лучше всего использовать для этой цели основное топливо двигателя, так как при этом существенно упрощает­ся его подача в газогенератор и улучшаются условия экс­плуатации ракеты. Газогенераторы этого типа называются двухкомпонентными.

3. Испарение жидкости в тракте охлаждения камеры дви­гателя. При этом способе получения рабочего тела турбины одновременно решается и задача охлаждении стенок ка­меры двигателя. Газогенераторы этого типа называют паро­генераторами, а схемы двигателей-безгенераторными. Схе­мы парогенераторов подразделяются на циркуляционные и со сменой рабочего тела. В первых произвольное рабочее тело (например, вода) циркулирует по замкнутому контуру «тракт охлаждения камеры - турбина - конденсатор - насос - тракт охлаждения камеры», превращаясь попеременно то в пар, то в жидкость в различных его частях. В схемах со сме­ной рабочего тела эта циркуляция отсутствует. Рабочее тело после турбины выводится из цикла. Очевидно, что непосред­ственный выброс отработавшего газа в атмосферу заметно ухудшил бы экономичность двигателя, так как удельная тяга выхлопных патрубков всегда меньше удельной тяги ка­меры двигателя. Чтобы устранить эти потери, в тракт охла­ждения камеры обычно посылается один из компонентов топ­лива. После испарения и срабатывания в турбине он направ­ляется в камеру двигателя, где и сжигается вместе со вторым компонентом. Таким образом, безгенераторные двигатели выполняются по схеме с дожиганием рабочего тела тур­бины.

По конструкции системы газогенерации значительно, отли­чаются друг от друга, но тем не менее в каждой из них мож­но выделить следующие общие основные элементы:

Газогенератор;

Топливоподающие устройства;

Автоматику.

В газогенераторе (иногда называемом реактором) непо­средственно образуется рабочее тело турбины - газ или пар заданных параметров. Топливоподающие устройства обеспечивают поступление средств газогенерации (исходных ве­ществ) в реактор. Автоматика осуществляет регулирование рабочего процесса, а также запуск и выключение газогене­ратора. Иногда (например, при работе на основном топли­ве) система газогенерации не имеет самостоятельных топливоподающих устройств. В этом случае питание газоге­нератора топливом обеспечивается системой подачи двига­теля.

В ЖРД нашли применение следующие типы газогенераторов (ГГ):

Твердотопливный (ТГГ);

Гибридный (ТГГ);

Однокомпонентный жидкостный (однокомпонетный ЖГГ);

Двухкомпонентный жидкостный (двух­компонентный ЖГГ);

Испарительный жидкостный (испарительный ЖГГ);

Автономные испытания насосов проводят для определения рабочих и кавитационных характеристик. При снятии рабочей характеристики определяют зависимости создаваемого напора, мощности и КПД насоса от расхода жидкости при номинальной частоте вращения и постоянном давлении на входе в насос. При снятии кавитационной характеристики насоса определяют зависимость напора, мощности и КПД от давления на входе при номинальном расходе и частоте вращения ротора насоса. Эти характеристики обычно снимают на установках с использованием очищенной от механических примесей смягченной воды. На рис. 13.6 приведена схема установки для испытания насоса двигателя.

Расходная емкость 12 заполняется водой бустерным насосом 1 . Необходимый уровень подпора (р вх) устанавливается вентилями и дросселем 4 , 11 и 13 . При открытии вентиля 4 вода через фильтр 5 поступает к испытуемому насосу 8 . Заданную частоту вращения насоса устанавливают электромотором 10 , месдоза 9 служит для измерения крутящего момента. Клапаном 4 устанавливается необходимый расход, значение которого измеряется датчиками расхода 6 . Напор насоса регулируется дросселем 11 , устанавливаемым в его напорной линии.

Рис. 13.6. Схема установки для испытания насосов:

1 – насос заправочный; 2 – фильтр; 3 – вентиль; 4 – отсечной клапан; 5 – фильтр; 6 – расходомер; 7 – манометр; 8 – испытуемый насос; 9 – месдоза; 10 – электромотор; 11 – дроссель; 12 – расходный бак; 13 – вентиль перелива

Для построения рабочих характеристик расход изменяют через определенные интервалы времени, поддерживая постоянными частоту вращения ротора и давление на входе. Для снятия кавитационных характеристик при номинальном значении расхода ступенчато снижается давление на входе в насос. Срыв работы насоса определяется по интенсивному падению значений параметров на выходе из него.

Энергетические характеристики представлены на рис. 13.7,а . По указанным зависимостям для любого заданного режима насоса по объемному расходу и угловой скорости вращения ротора насоса можно определить его основные параметры: развиваемый напор Н , потребляемую мощность N и коэффициент полезного действия . Универсальная кавитационная характеристика насоса представлена в виде зависимости на рис. 13.7,б .

Рис. 13.7. Универсальные энергетические (а ) и кавитационные (б ) характеристики насосов

Универсальные энергетические и кавитационные характеристики можно получить как расчетным, так и экспериментальным путем. Однако современные методы теоретического расчета характеристик еще не обладают достаточной точностью. Поэтому на практике характеристики определяются экспериментально на специальных экспериментальных установках (см. рис. 13.6).

При кавитационных испытаниях определяется критический кавитационный запас насоса, под которым понимается режим, при котором напор насоса падает ниже величины, заданной по техническому заданию на ДУ. На рис. 13.8 проиллюстрировано понятие критического кавитационного запаса, соответствующего допустимому падению давления на выходе из насоса ∆р Д при испытаниях кислородного и водородного насосов.

Рис. 13.8. Кавитационные характеристики насосов:

1 – кислородный насос; 2 – водородный насос; I – момент начала кавитации в насосе; II и III – первый и второй критические режимы работы насоса; IV и V – критические кавитационные запасы насосов, ∆р д – величина допустимого падения напора насоса; К – кавитационный запас насоса, K = p вх - p H / ( , p вх – давление на входе в насос; p H давление насыщенных паров; - плотность жидкости; g – ускорение свободного падения

Автономные испытания турбин проводят в модельных режимах, определенных с учетом требований теории подобия. В качестве рабочего тела чаще всего используют воздух или фреон. Стенды для испытания турбин и оценки их характеристик при использовании различных модельных газов могут быть выполнены по открытой (с выбросом рабочего тела после турбины в окружающую среду) или по замкнутой схеме.

В некоторых случаях, особенно для двигателей больших тяг, проводят автономные испытания ТНА совместно с газогенератором, так как для испытания ТНА требуется очень больших затраты мощности. Кроме того, в некоторых случаях автономная совместная отработка ТНА и газогенератора при огневых испытаниях позволяет существенно сократить материальные затраты на создание двигателя, так как возможный аварийный исход испытания этого узла не ведет к разрушению двигателя в целом.

При совместных испытаниях ТНА с газогенератором питание газогенератора компонентами топлива можно осуществлять от стендовых систем высокого давления. Такая схема была принята при отработке ТНА низкого и высокого давлений двигателя SSМЕ на стенде “Кока-1” испытательного комплекса в Санта-Сюзанна (США). Стенд обладал целым рядом недостатков, которые создавали определенные трудности при проведении испытаний ТНА и снижали качество полученных результатов. В первую очередь следует отметить, что условия испытания ТНА на стенде значительно отличались от условий их работы в составе двигателя. Так как при автономных испытаниях отсутствует взаимное влияние между элементами ТНА, переходные режимы (запуск, выход на режим и останов) существенно отличаются от переходных режимов при работе ТНА в составе двигателя.

Недостатком рассмотренной выше схемы испытаний насосов является ограниченность ресурса испытаний, который определяется запасом компонента в стендовых баках для питания насосов, так как компонент после насосов сливается в стендовую емкость или дожигается в стендовом дожигателе (при испытании водородного насоса). Применение газогенераторного привода также ограничивает ресурс работы установки из-за громоздкости вытеснительной системы питания газогенератора и малых запасов компонентов и газа. Возможны и другие схемы привода турбины, например с использованием газообразного водорода или же газогенератора, питающегося компонентами топлива от испытуемых насосов.

Для увеличения продолжительности испытания насоса в испытательном стенде предусматриваются специальные системы циркуляции криогенного компонента.

Известно, что при течении жидкости в трубопроводах и элементах арматуры происходят необратимые процессы, приводящие к росту энтропии потока, и возврат параметров жидкости к исходным возможен лишь при условии ее охлаждения. Этот процесс, простой для обычных жидкостей, существенно затруднен для криогенных жидкостей. Так, например, при течении криогенной жидкости в насосе увеличение напора сопровождается прогревом компонента топлива на 5…10 градусов.

В стендовой системе питания для охлаждения жидкости после насоса можно применять поверхностный теплообменник, однако он должен иметь большую поверхность, особенно при использовании гелия и водорода. Велики также гидропотери и затраты на циркуляцию теплоносителя, так как обычно используют пар охлаждаемой жидкости. Другой способ реализации – слив отработанной жидкости в промежуточную емкость, где она охлаждается до температуры насыщения в результате частичного испарения. Очевидно, что данный способ связан с минимальными потерями жидкости для охлаждения, но при этом увеличивается вероятность ее загрязнения и нарушается непрерывность процесса циркуляции, т. е. продолжительность испытания насоса на стенде определяется объемом расходного бака.

Указанные недостатки устраняются при использовании для циркуляции криогенного компонента струйного парожидкостного насоса сепарационного типа (струйных преобразователей энергии), принципиальная схема которого приведена на рис. 13.9. Насос работает следующим образом. Жидкость охлаждается в струйном аппарате в результате испарения части ее в сопле 1 и удаления пара из парожидкостной смеси в сепараторе 2 . Сепаратор представляет собой кольцевой канал, в котором капли жидкости за счет центробежной силы отбрасываются к периферии. На наклонной пластине, образующей диффузорный канал 3, происходит восстановление давления оставшейся жидкости, которая отводится через патрубок 5 с расходом , а испарившаяся часть жидкости с расходом отводится через патрубок 4 .

Рис. 13.9. Принципиальная схема струйного парожидкостного насоса сепарационного типа:

1 – сопло; 2 – сепаратор; 3 – диффузор; 4 , 5 – выхлопные патрубки

Схема стендовой установки для испытания насоса, перекачивающего криогенную жидкость, с циркуляционным контуром питания представлена на рис. 13.10. Установка включает расходный бак 1 , откуда криогенная жидкость через отсечной клапан 2 поступает в испытуемый насос 5 . Жидкость, проходя через струйный парожидкостный насос 7 и открытый сливной клапан 8, поступает в сливной бак 10 . После завершения захолаживания системы запускается насос 5 (например, включением электропривода или газового привода от газогенератора, которые на схеме не показаны). Циркуляционный контур включается открытием клапана 9 , затем клапан слива 8 закрывается. При этом в парожидкостном cтруйном насосе происходит разделение фаз: паровая фаза отводится по магистрали через осевой отвод струйного насоса 7 в дренажную емкость 6 , в которой собирается конденсированная часть пара, а жидкая фаза по замыкающему контуру, через центробежный сепаратор, диффузорный канал и клапан 9 возвращается на вход в насос.

Рис. 13.10. Схема стендовой установки для испытания насоса окислителя с циркуляционным контуром питания:

1 топливный бак; 2 – клапан подачи; 3 – дренажный клапан; 4 – магистраль слива конденсированной части испарившейся жидкости; 5 – испытуемый насос; 6 – дренажная емкость; 7 – струйный парожидкостный насос; 8 – клапан слива; 9 – дроссельный клапан включения циркуляционного контура; 10 – сливной бак; 11 – магистраль возврата жидкости в топливный бак; 1 2 – клапан; 13 – фильтр

Общий расход двухфазного компонента, проходящий через насос, составит

где , - расход жидкой и паровой фаз двухфазного потока компонента соответственно.

Эффективность работы циркуляционного контура определяется коэффициентом возврата (К в), равным отношению расхода жидкости через диффузор () к расходу двухфазного потока через сопло ():

К в = . (13.1)

Коэффициент возврата К в может достигать 0,9 при перекачивании двухфазного потока кислорода и 0,6…0,7 – при перекачивании двухфазного потока водорода, т. е. в этом случае 10 % (или 30…40 %) компонента теряется на испарительное охлаждение.

Продолжительность испытания при этом определяется расходом компонента из бака 1 (), равным расходу пара (), т.е. расходом компонента для компенсации потерь жидкости на испарение.